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Traditional text-based image retrieval:

slide credit: Qian Yu
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Image retrieval by text is
challenging
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Image retrieval by text is
challenging
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A sketch speaks for a
hundred words
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Sketch-based image retrieval
(SBIR) — related work

» Category-level SBIR:

E. Mathis et al. TVCG 2011, E. Mathis et al. Computers & Graphics 2010,
R. Hu ICIP 2010, Y. Cao, ACM 2010, ....
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Sketch-based image retrieval
(SBIR) — related work

* Fine-grained SBIR:

Text Search
* fine-grained in the way of ooking s
object configuration —

 Y.Li, T. Hospedales, Y.-Z. Song, and S. Gong.
fine-grained sketch-based image retrieval by

matching deformable part models. In BMVC,
2014

Sketch Search
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Fine-grained instance-level sketch-
based image retrieval (SBIR)

» Challenges

1.visual comparison in a fine-grained, cross-
domain way

2.free-hand sketches are highly abstract

3.annotated cross-domain sketch-photo datasets
are scarce



Main contribution

1. Introduce two new datasets
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Main contribution

2. Overcome the requirements of extensive data and
annotation by

* pre-training

* sketch-specitic data augmentation



Data collection—photo
Images

* Shoe images

e UT-Zap50K

* 419 images, high-heel, ballerinas, tormal, informal
* Chair images

* |IKEA, Amazon, Taobao

e 297 images, office chairs, couches, kids chair, desk
chairs...



Data collection—sketches

22 volunteers: none has any art training



Data annotation

Train a ranking model instead of a verification
model

Triplet ranking instead of global ranking

* given a sketch query, which of the two photos is
more similar to it”

* Question: How to select a subset of triplets to be
annotated?



Data annotation

1. Attribute annotation:
 Need to measure distance between a sketch and a photo

 Based on: attribute vector + deep feature vector

2. Generating candidate photos for each sketch:

* Jop 10 closest photo images to the query sketch

3. Triplet annotation:
. C" > triplets for each sketch; 3 people annotated each triplet.

 Majority voting to merge 3 annotations.



Objective function for triplet
ranking

Negative m
Anchor LEARNING
Negative
O

Anchor .
Positive Positive

Lo(t) = max(0, A+D(fo(s), fo(»™))~D(fo(s). o (p7)))

distance between sketch aisthposithatvpderticsketch and negative photo




Network architecture
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Pre-train/fine-tune

. Generalize to both photos and sketches

. Exploit auxiliary sketch/photo category-paired
data to pre-train the abillity to rank

. Fine-tune on contributed shoe/chair dataset



Generalize to both photos
and sketches— Step1,2

* Train a single Sketch-a-Net to recogmze pboth
ohotos and sketches R

1. Photos:

* Pre-train to classify 1000 categories of
ImageNet-1K with edge maps extracted

2. Free-hand sketches:

* Fine-tune to classify 250 categories of TU-Berlin

Sketch-a-Net that Beats Humans Q. Yu, Y. Yang, Y-Z. Song, T. Xiang and T. Hospedales(BMVC 2015)



Exploit auxiliary sketch/photo
category-paired data—Step 3

* [rain sketch-photo ranking network:

1. Initialize each branch network with the previous
learned Sketch-a-Net

2. Pre-train triplet ranking model using category-level
annotation

* select 187 categories which exist in both TU-

Berlin(sketch) and ImageNet(photo) ) p—

$ = \
8976 sketches, 19026 photos piﬁ

p
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Exploit auxiliary sketch/photo
category-paired data—Step 3

distance: Euclidean distance of Sketch-a-Net features

top 20% most similar
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FIne-tune on target scenario
—Step 4

e [rain sketch-photo ranking network:

e Fine-tune on contributed shoe/chair dataset



Data augmentation

Input
(1 Sketch)
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Experiments—ifine-grained
iNnstance-level retrieval

e Evaluation metrics

* retrieval accuracy: how quickly a model finds a
specific item/image

* % correctly ranked triplets: overall quality of a
model’s ranking list



Experiments—ifine-grained
iNnstance-level retrieval

* Baselines
* hand-crafted
- HOG+BoW+RankSVM
- Dense HOG+RankSVM
* deep features

- single Sketch-a-Net extracted feature

- 3D shape: FWang, L.Kang, Y.Li, “Sketch-based 3d shape
retrieval using convolutional neural networks”, CVPR 2015



ExXperimental result

random: 50%

Shoe Dataset acc.@1 acc.@10 %ocorr.
BoW-HOG + rankSVM | 17.39% 67.83% 62.82%
Dense-HOG + rankSVM | 24.35% 65.22% 67.21%
ISN Deep + rankSVM | 20.00% 62.61% 62.55%
3DS Deep + rankSVM 5.22%  21.74%  55.59%
Our model 39.13% 87.83% 69.49%

Chair Dataset acc.@] acc. @10 Yocorr.
BoW-HOG + rankSVM | 2887% 67.01% 61.56%
Dense-HOG + rankSVM | 52.57% 93.81% 68.96%
ISN Deep + rankSVM 4742% 82.47%  66.62%
3DS Deep + rankSVM 6.19% 26.80% 51.94%
Our model 69.07% 97.94% 72.30%




ExXperimental result
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Contribution of different
component

without any pretaining

acc. @1

a.lO

Step 2 + 4, no data aug 33.04% 81.74%
pre_trainstgegg 2+ él% with data aug 36.52% 84.35%
Step 1 + 2 + 4, with data aug | 38.26%  85.22%
Step 1-4, no data aug 37.39%  86.09%
Our full model 39.13% 87.83%




Slamese or heterogeneous?
Ranking or verification”

acc.@] acc.@10

Siamese verification -
Hetero. ranking 21.
Hetero. verification

87 83%

Our full m()del siamese, ranking




Conclusion

e 1st work to do fine-grained instance-level SBIR

* Limited amount of training data
e Siamese network, triplet ranking

e with more photo/sketch pair data, heterogeneous
could be better
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Demo

https://www.eecs.amul.ac.uk/~qgian/Project cvpri6.html
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