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Recognizing object instances

Kristen Grauman
UT-Austin

Announcements

* Assignment 1 is out, due Fri Sept 16

Presentation day assignments will be up by Monday

Today - please sign sheet if not registered

Optional Caffe/CNNs Tutorial Mon Sept 12, 5-7 pm.

Reminder — no laptops, phones, etc. in class please
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Plan for today

» 1. Basics in feature extraction: filtering
2. Invariant local features
* 3. Recognizing object instances

Basics in feature extraction




Image Formation

Illumination (energy)

,7/?\

Imaging system

(Internal) image plane

Scene element

Slide credit: Derek Hoiem

Digital images

ab

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

Slide credit: Derek Hoiem
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Digital images

« Sample the 2D space on a regular grid
* Quantize each sample (round to nearest integer)

» Image thus represented as a matrix of integer values.

0 0 48
68 0 49 2 D

37 0 7
2

2 31
0 99 30

il

NTTHLM 1D

original

Adapted from S. Seitz

Digital color images

ayer filter

& I000 How Soui Works
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Digital color images

Color images,
RGB color

Main idea: image filtering

« Compute a function of the local neighborhood at
each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighbors.

» Uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Adapted from Derek Hoiem




Motivation: noise reduction

« Even multiple images of the same static scene will
not be identical.

Motivation: noise reduction

« Even multiple images of the same static scene will
not be identical.

* How could we reduce the noise, i.e., give an estimate
of the true intensities?

* What if there’s only one image?

| Kristen Grauman
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First attempt at a solution

» Let’s replace each pixel with an average of all

the values in its neighborhood

« Assumptions:
» Expect pixels to be like their neighbors

* Expect noise processes to be independent from pixel to pixel

First attempt at a solution

» Let’s replace each pixel with an average of all

the values in its neighborhood
* Moving average in 1D:

il
I

Source: S. Marschner
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Weighted Moving Average

Can add weights to our moving average
Weights [1,1,1,1,1] /5

Source: S. Marschner

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1]/ 16

Source: S. Marschner
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Moving Average In 2D

Flx,y]

Glz, y]

Source: S. Seitz

Moving Average In 2D

Flx,y]

Glz, y]
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Source: S. Seitz
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Moving Average In 2D

Flx,y]

Glz, y]
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Source: S. Seitz

Moving Average In 2D
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Glz, y]
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Source: S. Seitz
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Moving Average In 2D

Flx,y]

Glz, y]

20

30

30
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Source: S. Seitz

Moving Average In 2D

Flx,y]

Glz, y]

Source: S. Seitz
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Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

k k
o 1 : :
G[%J]:m Z Z Fli+u,j+ v]
u=—kv=—k
L )\ J
Y Y
Attribute uniform Loop over all pixels in neighborhood

weight to each pixel  around image pixel F[i,j]

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

k k
Gli,jl= > > Hluv]Fli+u,j+7]
u=—kv=—k — 1
Non-uniform weights

Correlation filtering

k k
Gli,jl= Y. > Hu,v]F[i+ u,j+ v]
u=—kov=-—k

This is called cross-correlation, denoted (7 = H X F

Filtering an image: replace each pixel with a linear
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

8/31/2016
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Averaging filter

* What values belong in the kernel H for the moving
average example?

Flx, y] ®  Hlu,v] Gz, y]
1111 o|'l_‘|
1 - ——"
11|91
9 n
1011

“box filter”

G=HQF

Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?

8/31/2016
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Gaussian filter

» What if we want nearest neighboring pixels to have
the most influence on the output?

This kernel is an
approximation of a 2d

Gaussian function:
1121 1 _uH?
i T3 h(u,v)=2 5€ o2
16 Vixes
1211
Hlu,v]

Flz,y]

* Removes high-frequency components from the
image (“low-pass filter”).

Source: S. Seitz

Smoothing with a Gaussian

14



Gaussian filters

« What parameters matter here?

» Variance of Gaussian: determines extent of
smoothing

o = 2 with o = 5 with

30 x 30 30 x 30
kernel kernel

Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

0 10 20 30

for sigma=1:3:10
h = fspecial('gaussian‘', fsize, sigma);
out = imfilter (im, h);
imshow (out) ;
pause;
end

| Kristen Grauman

8/31/2016
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Properties of smoothing filters

» Smoothing

— Values positive

— Sumto1~>

— Amount of smoothing proportional to mask size

— Remove “high-frequency” components; “low-pass” filter

Predict the outputs using
correlation filtering

8/31/2016
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Practice with linear filters

o

-

o
~

Original

Source: D. Lowe

Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe

8/31/2016
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Practice with linear filters

Original

Source: D. Lowe

Practice with linear filters

000
0|01
000
Original Shifted left
by 1 pixel
with
correlation

Source: D. Lowe

8/31/2016
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Practice with linear filters

Original

Source: D. Lowe

Practice with linear filters

Ol

Original Blur (with a
box filter)

Source: D. Lowe
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Practice with linear filters

0l0l0 17171
020-3111 ?
000 17171

Original

Source: D. Lowe

Practice with linear filters

0/0]0 AT
0[2(0] = _[11]1
0/j0jo0 1111

Original Sharpening filter:

accentuates differences
with local average

Source: D. Lowe

8/31/2016
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Filtering examples: sharpening

Filtering application: Hybrid Images

What you see... From Far Away Up Close

| see an
— angry guy

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

8/31/2016
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Application: Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

Gaussian Filter

Laplacian Filter

unitimpulse  Gaussian Laplacian of Gaussian

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

8/31/2016
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Changing expression

Sad

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Main idea: image filtering

« Compute a function of the local neighborhood at
each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighbors.

» Uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

8/31/2016
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Why are gradients important?

Derivatives and edges

An edge is a place of rapid change in the
image intensity function.

intensity function
image (along horizontal scanline) first derivative

\ |

edges correspond to
extrema of derivative

Source: L. Lazebn|

8/31/2016
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Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

o 6y) o f(x+2,0) = f(50)

ox £—0 &

For discrete data, we can approximate using finite
differences:

o () _ f+1p)~f(5.)
ox 1

To implement above as convolution, what would be the
associated filter?

| Kristen Grauman

Partial derivatives of an image

Which shows changes with respect to x?

| Kristen Grauman (showing filters for correlation)

8/31/2016
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Image gradient

The gradient of an image:
— [9f Of ]
Vi=|3 5
The gradient points in the direction of most rapid change in intensity

(el I V=B
y I

vi=|o

The gradient direction (orientation of edge normal) is given by:
— -1 (9f ﬂ)

Slide creant steve >eiz

]

Mask properties
» Smoothing

— Values positive

— Sum to 1 - constant regions same as input

— Amount of smoothing proportional to mask size

— Remove “high-frequency” components; “low-pass” filter

» Derivatives

- signs used to get high response in regions of high
contrast

— Sumto___ - noresponse in constant regions
— High absolute value at points of high contrast

8/31/2016
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Main idea: image filtering

» Compute a function of the local neighborhood at
each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighbors.

» Uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Template matching

* Filters as templates:

Note that filters look like the effects they are intended
to find --- “matched filters”

» Use normalized cross-correlation score to find a
given pattern (template) in the image.

* Normalization needed to control for relative
brightnesses.

8/31/2016
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Template matching

N
‘4 4

Template (mask)

Scene

A toy example

Template matching

Ny 9
| N

Template

Detected template

8/31/2016
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Template matching

[ N

3

Detected template Correlation map

Template

8/31/2016
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W A id

Detected template

Correlation map

8/31/2016
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Template matching

Template

Scene

What if the template is not identical to some
subimage in the scene?

Template matching

Template

Detected template

Match can be meaningful, if scale, orientation,
and general appearance is right.

...but we can do better!...

8/31/2016
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Summary so far

» Compute a function of the local neighborhood at
each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighbors.

» Uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Plan for today

1. Basics in feature extraction: filtering
« 2. Invariant local features
3. Specific object recognition methods

8/31/2016
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d description

Local features

detection an

Basic goal

33



Local features: main components

1) Detection: Identify the
interest points

2) Description:Extract vector
feature descriptor X =
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman

Goal: interest operator repeatability

* We want to detect (at least some of) the
same points in both images.

No chance to find true matches!

* Yet we have to be able to run the detection
procedure independently per image.

8/31/2016
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Goal: descriptor distinctiveness

* We want to be able to reliably determine
which point goes with which.

* Must provide some invariance to geometric
and photometric differences between the two
views.

Local features: main components

1) Detection: Identify the
interest points

2) Description:Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman

8/31/2016
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VELLLELETETT

* What points would you choose?

Detecting corners

36



Detecting corners

Compute “cornerness” response at every pixel.

Detecting corners

8/31/2016
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Detecting local invariant
features

» Detection of interest points
— Harris corner detection
— Scale invariant blob detection: LoG

Corners as distinctive interest points

We should easily recognize the point by
looking through a small window

Shifting a window in any direction should give
a large change in intensity

“flat” region: “edge”: “corner”:

no change in no change along significant

all directions the edge change in all
Slide credit: Alyosha Efros, Darya Frolova, Degiérseln?a Ig/n dIFeCtIOI’]S
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Corners as distinctive interest points

11, 11,

M= wx,y)
I, 11,

2 x 2 matrix of image derivatives (averaged in
neighborhood of a point).

o

Z=e

Notation:

What does this matrix reveal?

First, consider an axis-aligned corner:

—
—

8/31/2016
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What does this matrix reveal?

First, consider an axis-aligned corner:

2
M-y I 1, {/11 0}
2
11, I 0 4
This means dominant gradient directions align with
X or y axis

Look for locations where both A's are large.

If either A is close to 0, then this is not corner-like.

What if we have a corner that is not aligned with the
image axes?

What does this matrix reveal?

0
Since M is symmetric, we have M = XF(; }XT

2

Mx, = Ax,

The eigenvalues of M reveal the amount of
intensity change in the two principal orthogonal
gradient directions in the window.

8/31/2016
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Corner response function

“edge”: “corner”: “flat” region
A >> 0, L, and A, are large, A, and A, are
Ay >> A4 Ay~ Ay; small;

f= A1AD
A1+ A2

Harris corner detector

1) Compute M matrix for each image window to
get their cornerness scores.

2) Find points whose surrounding window gave
large corner response (> threshold)

3) Take the points of local maxima, i.e., perform
non-maximum suppression

41



Harris Detector: Steps

Harris Detector: Steps
Compute corner response f

8/31/2016
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Harris Detector: Steps

Find points with large corner response: f > threshold

Harris Detector: Steps

Take only the points of local maxima of f

8/31/2016
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Harris Detector: Steps

Properties of the Harris corner detector

Rotation invariant? Yes A 0
M=X X7
2

Scale invariant?

8/31/2016
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Properties of the Harris corner detector

Rotation invariant? Yes
Scale invariant? No

) =

All points will be Corner!!
classified as edges

Scale invariant interest points

How can we independently select interest points in
each image, such that the detections are repeatable
across different scales?

8/31/2016
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Automatic scale selection

Intuition:
* Find scale that gives local maxima of some function
fin both position and scale.

f
N /\ Image 2
él region size é7 region size

What can be the “signature” function?

8/31/2016
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric
operator for blob detection in 2D

Blob detection in 2D: scale selection

o’g 0O’g

Laplacian-of-Gaussian = “blob” detector V’g=—2
ox’

p

filter scales

img1 img2 img3

&yZ

8/31/2016
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Blob detection in 2D

We define the characteristic scale as the scale
that produces peak of Laplacian response

1500

Slide credit: Lana Lazebnilf

Example

Original image
at % the size

8/31/2016
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o
ous

s
o0

Original image
at % the size

sigma=2.1

sigma=4.2

T

i

® "
w” L]
w0
oo

8/31/2016
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sigma=6

sigma=9.8

8/31/2016
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sigma=15.5

sigma=17

8/31/2016
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Scale invariant interest points

Interest points are local maxima in both position
and scale.

rend

g 22 ZZZ7

o

LH(O') +Lyy (O')—>0.3

i P P AP P A
\ L ol 7
Vil S 77, ) M
LT T T
ST TTT T

= List of
(x ¥, 0)

ol

Squared filter
response maps

ATIES e Z 7
~ . /777 scale
ot "wﬂ

Scale-space blob detector: Example

original tmage

scale-space mazima of (V2. L)
) 9 U5 0 O )

o o jofcy

% 09 8 Ooooé’o 5 °P0g
o [} @

0 0-0g o) 00

&0 % 08° £0 000 B
) 00 oo

O Q o] O (B

0 g oo OO@CQC o g,

@] c } og
™ O o

O N

T. Lindeberg. Feature detection with automatic scale selection. 1JCV 1998.

8/31/2016
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Scale-space blob detector: Example

Image credit: Lana Lazebnik

Technical detail

We can approximate the Laplacian with a
difference of Gaussians; more efficient to
implement.

L=O_2(Gxx(x,y’o-)+ny(x,y,O')) :j A K ]

(Laplacian)

DoG =G(x,y,ko)-G(x,y,0)

(Difference of Gaussians)

02

I (ko) I(ko)-1(o)

— Laplacian
= DoG
[E S S S S
1 2 3 4

8/31/2016
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Recap so far: interest points

* Interest point detection
— Harris corner detector
— Laplacian of Gaussian, automatic scale selection

Local features: main components

1) Detection: Identify the
interest points

2) Description:Extract vector _
feature descriptor X
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman
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Geometric transformations

Multiple View

translation,
rotation

Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial

8/31/2016
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Raw patches as local descriptors

region A region B

The simplest way to describe the
. mgm | neighborhood around an interest
point is to write down the list of

intensities to form a feature vector.

!l !
—  B=5
E%E But this is very sensitive to even

y small shifts, rotations.
vector a vector b

Scale Invariant Feature Transform (SIFT)

descriptor [Lowe 2004]
« Use histograms to bin pixels within sub-patches

according to their orientation.

gradients

AN I

|:> # K A Final descriptor =
concatenation of all
\k L

histograms, normalize

L N il

histogram per grid cell

subdivided local patch

56



Scale Invariant Feature Transform (SIFT)
descriptor [Lowe 2004]

SIFT descriptors
scales and orientations

(random subset of 50)

http://www.vlfeat.org/overview/sift.html

Making descriptor rotation invariant

* Rotate patch according to its dominant gradient
orientation
» This puts the patches into a canonical orientation.

Image from Matthew Brown

8/31/2016
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SIFT descriptor [Lowe 2004]

- Extraordinarily robust matching technique
Can handle changes in viewpoint
» Up to about 60 degree out of plane rotation
Can handle significant changes in illumination
+ Sometimes even day vs. night (below)
Fast and efficient—can run in real time
Lots of code available, e.g. nttp://www.vlfeat.org/overview/sift.html

e | s

NASA Mars Rover images

8/31/2016
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Example

NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

SIFT properties

* |nvariant to
— Scale
— Rotation

+ Partially invariant to
— lllumination changes
— Camera viewpoint
— Occlusion, clutter

8/31/2016
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Local features: main components

1) Detection: Identify the
interest points

2) Description:Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman

Matching local features

8/31/2016
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Matching local features

4,/,‘

-

To generate candidate matches, find patches that have
the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or
closest k, or within a thresholded distance)

Ambiguous matches

Image 1 Image 2

At what SSD value do we have a good match?

To add robustness to matching, can consider ratio :
distance to best match / distance to second best match

If low, first match looks good.
If high, could be ambiguous match.
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Matching SIFT Descriptors

* Nearest neighbor (Euclidean distance)
* Threshold ratio of nearest to 2" nearest descriptor

0.8

0.7

0.6 PDF for correct matches —
PDF for incorrect matches =
0.5

PDF

04

0.3

SN
AN
0.1 \ -
i -t

0 O B e WA e g
0 01 02 03 04 05 06 07 08 08 1
Ratio of distances (closest/next closest) Lowe 1JCV 2004

Scale Invariant Feature Transform (SIFT)
descriptor [Lowe 2004]

Interest points and their SIFT descriptors
scales and orientations
(random subset of 50)

http://www.vlfeat.org/overview/sift.html

8/31/2016
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SIFT (preliminary) matches

http://www.vlfeat.org/overview/sift.html

Value of local (invariant) features

Complexity reduction via selection of distinctive points

Describe images, objects, parts without requiring
segmentation

Local character means robustness to clutter, occlusion

Robustness: similar descriptors in spite of noise, blur, etc.

8/31/2016
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Applications of local
invariant features

Wide baseline stereo
Motion tracking
Panoramas

Mobile robot navigation
3D reconstruction
Recognition

Automatic mosaicing

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

8/31/2016
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Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Photo tourism [Snavely et al.]
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Recognition of specific objects, scenes

Rothganger et al. 2003 Lowe 2002

Summary so far

* Interest point detection
— Harris corner detector
— Laplacian of Gaussian, automatic scale selection

* Invariant descriptors
— Rotation according to dominant gradient direction

— Histograms for robustness to small shifts and
translations (SIFT descriptor)

8/31/2016
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Plan for today

» 1. Basics in feature extraction: filtering
2. Invariant local features
* 3. Recognizing object instances

Recognizing or retrieving
specific objects
Example I: Visual search in feature films

Visually defined query “Groundhog Day” [Rammis, 1993]

“Find this
clock”

“Find this
place” E

Slide credit: J. Sivic

8/31/2016
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Recognizing or retrieving
specific objects

Example Il: Search photos on the web for particular places

Find these landmarks ...in these images and 1M more

Slide credit: J. Sivic

==
E Google Goggles

Use pictures to search the web. > Watch a video

Get Google Goggles

Android (1.6+ required)
Download from Android Market.

Send Goggles to Android phone

New! iPhone (i0S 4.0 required)
Download from the App Store.

Send Goggles to iPhone

Contact Info

Tk Landmarks

?_:] Google goggles st

Lammkoteletts vom Biobauern mit
Schalotten, Tomatencoulis und Basilikum-
Gnocchi

German (auto) « Engish

Lamb chops from the farmers with the
shallots, tomato sauce and basil gnocchi

8/31/2016
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Why is it difficult?

Want to find the object despite possibly large changes in
scale, viewpoint, lighting and partial occlusion

el

Viewpoint

Lighting Occlusion

We can’t expect to match such varied instances with a single
global template...

Slide credit: J. Sivic

Instance recognition

* Visual words

* quantization, index, bags of words
« Spatial verification

« affine; RANSAC, Hough

8/31/2016
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Indexing local features

» Each patch / region has a descriptor, which is a
point in some high-dimensional feature space
(e.g., SIFT)

Descriptor’s
feature space

Kristen Grauman

Indexing local features

* When we see close points in feature space, we
have similar descriptors, which indicates similar
local content.

Descriptor’s i(rlnuaer)e/
feature space 9
Database Easily can have millions of
Kristen Grauman images features to search!

8/31/2016
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Indexing local features:
inverted file index

* For text
M e sy ot gy documents, an

oty Fusl bk v CAA (308 Duval Gounty; 163
"Deive 1495, From Bostan o SCoim 1 Mnimss 10z Eau Galis; 175

oo S cocon vSEN SU sevineni s efficient way to find
101-102,104 Mame; 150 l 3

511 Traffic Information; 83 Canaversl Natal Seashore; 173 EHH\M 1“-1‘5 .
MLt Smimimt mmormm all pages on which
AR Nl mﬂDﬂm% Cape Canaveral, 174 Epipryles; 1 42158‘5’ 159
Abbeial Castllo San Marcos: 169 Escaribia Bay; 1 .
e BT = a word occurs is to
Mr:mﬁ? e, 85 g:lnbrm.?e i Enw 53 ; .
el S use an index...

i Condil . First; Chipley; 114 Wonder Gardens; 154

;124 Mame; 115 Falling Waters SP. 115

d : .
e AL L * We want to find all

CilyFizce, W Paim Beach: 150 Fires, Prascrived ; 143
ﬂﬂy Maps,

. 3
e . : .
-~ images in which a
Miami Exprossways; 184-185 Filorida,

e feature occurs.

Map of all Exprassways: 2-
Mus of Maural Hisiory; 1 o

jational Comtery : 141
Part of Alfica; 177

mm L * To use this idea,

Sports Hel o Farme: 130
San'n Fun a7

PEETREE e we’'ll need to map
Tt our features to
B R “visual words”.

Dania Beach Hus Spur SA91: 76

Kristen Graummps«m\ 160 Oanil Bone, ot ke 117 Ticket System; 190

Dayina Besch 172173 ol Plazns; 15
Socd Heory 15

Visual words

* Map high-dimensional descriptors to tokens/words
by quantizing the feature space

¢ Quantize via
clustering, let
cluster centers be
the prototype
“‘words”

Word #2
_/

. * Determine which
/ Descriogor word to assign to
> . escriptor's each new image
eature space . .
region by finding
the closest cluster
center.

Kristen Grauman

8/31/2016
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Visual words: main idea

* Extract some local features from a number of images ...

e.g., SIFT descriptor space: each
point is 128-dimensional

Slide credit: D. Nister, CVPR 2006

Visual words: main idea

_t- .
= ‘ . :
“\ " = $§’_ .
\. . .. .
= \'.\‘o ¢
— .
g \;. :

8/31/2016
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Visual words: main idea

Visual words: main idea

8/31/2016
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[ ]
. .C
et
.o
Each point is a o Tt et )
local descriptor, A
e.g. SIFT vector. e o .
. N )
[ )
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Visual words

* Example: each E“Enﬁﬁﬁﬁﬁﬁ
group of patches Eﬁﬁﬁﬁﬁﬁﬁﬁﬁ

belongs to the

same visual word ENNHUUDMNN
‘ QE 5% FF 57 3% §F UE 47 4§ 55 A
aalelanleslnlels

ansamiailas min

AEA . —--
o . .
o -

.

Kristen Grauman Figure from Sivic & Zisserman, ICCV 2003

Inverted file index

o Image #1

@ 2
[
o )
= 7 ]
o g o
g Image #2 8 3
0
o
a 9

10

Image #3
9 2

« Database iFnages are loaded into the index mapping
words to image numbers

Kristen Grauman
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Inverted file index

New query image

* New query image is mapped to indices of database
images that share a word.

Kristen Grauman

Instance recognition:
remaining issues

 How to summarize the content of an entire
image? And gauge overall similarity?

* How large should the vocabulary be? How to
perform quantization efficiently?

* Is having the same set of visual words enough to
identify the object/scene? How to verify spatial
agreement?

Kristen Grauman
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Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the
messages that x 2 OUr eyes.

eye, cell, optical
nerve, image
Hubel, Wiesel .

following thé
to the various

demonstrate that the message abo¥§
image falling on the retina undergoe$
wise analysis in a system of nerve cell
stored in columns. In this system each
has its specific function and is responsibld
a specific detail in the pattern of the retinal
image.

China is forecasting a trade surplus of $90bn
(£51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by
a predicted 30%# $750bn,

exports, imports, US,
uan, bank, domestic,/{

permitted it to trade within a narrow
the US wants the yuan to be allowe
freely. However, Beijing has made it ¢
it will take its time and tread carefully bd
allowing the yuan to rise further in value.

ICCV 2005 short course, L. Fei-Fei

Vs

8/31/2016
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Bags of visual words

« Summarize entire image H H
based on its distribution -
(histogram) of word K L
occurrences. 1

» Analogous to bag of words @G
representation commonly

'Th o =
used for documents.

Ns“ S 'fw ;“-’_' :.r
k Eulo- r‘ﬁ* N‘&

Comparing bags of words

* Rank frames by normalized scalar product between their
(possibly weighted) occurrence counts---nearest
neighbor search for similar images.

18 1 4] 511 0] sim(dq) = (d;,q)
0 gl

4@
R (ELaa@?

for vocabulary of V words
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Inverted file index and

bags of words similarity

w

1 8

New query image

1. Extract words in query

2. Inverted file index to find
relevant frames

3. Compare word counts

Kristen Grauman

Instance recognition:
remaining issues

 How to summarize the content of an entire
image? And gauge overall similarity?

* How large should the vocabulary be? How to
perform quantization efficiently?

* Is having the same set of visual words enough to
identify the object/scene? How to verify spatial
agreement?

Kristen Grauman
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Vocabulary size

Results for recognition task

— 80 em=zn" with 6347 images
S
870
c Branching
g factors
S 60/ — 8
c o) |- 10
" 50 - 19
10k 100k 1M 10M
Nr of Leaf Nodes

Influence on performance, sparsity? Nister & Stewenius, CVPR 2006

s
i
]
5

=
=
(]

=
[=
(2]
]
(3]
(3]

(4
-
[3]

2

Q2

o

s
=2

2

>

Vocabulary Trees: hierarchical clustering
for large vocabularies
e Tree construction:

4
° \
[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister
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Vocabulary Tree

[Nister & Stewenius, CYPR’06]
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K. Grauman, B. Leibe Slide credit: David Nister

Vocabulary trees: complexity

Number of words given tree parameters:
branching factor and number of levels

Word assignment cost vs. flat vocabulary
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Visual words/bags of words

flexible to geometry / deformations / viewpoint
compact summary of image content

provides vector representation for sets

very good results in practice

+ + + +

- background and foreground mixed when bag
covers whole image

- optimal vocabulary formation remains unclear

- basic model ignores geometry — must verify
afterwards, or encode via features

Kristen Grauman

Instance recognition:
remaining issues

 How to summarize the content of an entire
image? And gauge overall similarity?

* How large should the vocabulary be? How to
perform quantization efficiently?

* Is having the same set of visual words enough to
identify the object/scene? How to verify spatial
agreement?

Kristen Grauman

8/31/2016
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Which matches better?

Derek Hoiem

Spatial Verification

similarity DB image with high BoW
similarity

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

8/31/2016
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Spatial Verification

similarity DB image with high BoW
similarity

Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

Spatial Verification: two basic strategies

* RANSAC

* Generalized Hough Transform

Kristen Grauman

8/31/2016
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Oultliers affect least squares fit

[

4

2

]
=N
-4
-6
-8

Outliers affect least squares fit

B
4
2
0 /
al
4
-6
-8
-0k
_] 2 -
_]4 1
-14 12 1m0 ] E -4 2 0 2 4 [
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RANSAC

 RANdom Sample Consensus

« Approach: we want to avoid the impact of outliers,
so let’s look for “inliers”, and use those only.

* Intuition: if an outlier is chosen to compute the
current fit, then the resulting line won’t have much
support from rest of the points.

RANSAC for line fitting

Repeat N times:
« Draw s points uniformly at random
* Fit line to these s points

* Find inliers to this line among the remaining
points (i.e., points whose distance from the
line is less than t)

» Ifthere are d or more inliers, accept the line
and refit using all inliers

Lana Lazebnik

8/31/2016
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RANSAC for line fitting example

Source: R. Raguram

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram

Least-squares fit

Lana Lazebnik

8/31/2016
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RANSAC for line fitting example

Source: R. Raguram

o
.

1. Randomly select
minimal subset
of points

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

Lana Lazebnik

8/31/2016
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RANSAC for line fitting example

Source: R. Raguram
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1. Randomly select
minimal subset
of points

2. Hypothesize a

model

3. Compute error

function

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram
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1. Randomly select

minimal subset
of points

2. Hypothesize a

model

3. Compute error

function

4. Select points

consistent with
model

Lana Lazebnik
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RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model
Compute error
function
Select points
consistent with
model
Repeat
hypothesize-and-
verify loop
203
Lana Lazebnik
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RANSAC for line fitting example

Source: R. Raguram

Uncontaminated sample

. 7
. . . /
o ey
. // 2
. ) y // '.
LI . . /“///.‘ : a.
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) /'7 2 . .
4 .
,,/‘ .'
! C . . *

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

. Select points

consistent with
model
Repeat
hypothesize-and-
verify loop
204
Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

. Select points

consistent with
model

Repeat
hypothesize-and-
verify loop

Lana Lazebnik
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That is an example fitting a model
(line)...

What about fitting a transformation
(translation)?

RANSAC example: Translation

ELTRT M ﬁ:. "%;;__;

Putative matches

Source: Rick Szeliski

8/31/2016

92



8/31/2016

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

93



RANSAC example: Translation

.‘.w 'E"

Find “average” translation vector

RANSAC: General form

RANSAC loop:

Randomly select a seed group of points on which to
base transformation estimate

Compute model from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute
estimate of model on all of the inliers

Keep the model with the largest number of inliers

8/31/2016
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RANSAC verification

For matching specific scenes/objects, common to
use an affine transformation for spatial verification

Fitting an affine transformation

(x5, o Approximates viewpoint
(x5, 1) changes for roughly
. © . 2 planar objects and
* roughly orthographic
4 y cameras.
[} [}

MEEa K

8/31/2016
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RANSAC verification

Spatial Verification: two basic strategies

« RANSAC
— Typically sort by BoW similarity as initial filter
— Verify by checking support (inliers) for possible affine
transformations

* e.g., “success” if find an affine transformation with > N inlier
correspondences

* Generalized Hough Transform

— Let each matched feature cast a vote on location,
scale, orientation of the model object

— Verify parameters with enough votes

Kristen Grauman

8/31/2016
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Spatial Verification: two basic strategies

« RANSAC
— Typically sort by BoW similarity as initial filter
— Verify by checking support (inliers) for possible affine
transformations

* e.g., “success” if find an affine transformation with > N inlier
correspondences

* Generalized Hough Transform

— Let each matched feature cast a vote on location,
scale, orientation of the model object

— Verify parameters with enough votes

Kristen Grauman

Voting

 It's not feasible to check all combinations of features by
fitting a model to each possible subset.

» Voting is a general technique where we let the features
vote for all models that are compatible with it.
— Cycle through features, cast votes for model parameters.

— Look for model parameters that receive a lot of votes.

* Noise & clutter features will cast votes too, but typically
their votes should be inconsistent with the majority of
“‘good” features.

Kristen Grauman

8/31/2016
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Difficulty of line fitting

Kristen Grauman

Hough Transform for line fitting

+ Given points that belong to a line, what
is the line?

* How many lines are there?
* Which points belong to which lines?

* Hough Transform is a voting
technique that can be used to answer
all of these questions.

Main idea:

1. Record vote for each possible line
on which each edge point lies.

2. Look for lines that get many votes.

Kristen Grauman
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Finding lines in an image: Hough space

y b
y = moz + bg
—
bo| e
X mo m
image space Hough (parameter) space

Connection between image (x,y) and Hough (m,b) spaces
» Aline in the image corresponds to a point in Hough space
» To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx + b

Slide credit: Steve Seitz

Finding lines in an image: Hough space

y b
Yo ° b= —zom+ yo
—
Xo X m
image space Hough (parameter) space

Connection between image (x,y) and Hough (m,b) spaces
* Aline in the image corresponds to a point in Hough space
» To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx + b
» What does a point (x,, ¥,) in the image space map to?
— Answer: the solutions of b = -x;m + y,

— this is a line in Hough space
Slide credit: Steve Seitz

8/31/2016
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Finding lines in an image: Hough space

y b
® (X,
Vo R (X1, y1) b= —zgm + vg
(Xo: Yo) —l
b=-xym+y,
XO X m
image space Hough (parameter) space

What are the line parameters for the line that contains both
(X0, Yo) @and (x4, y4)?

+ Itis the intersection of the lines b = —x,m + y, and
b=-x;m+y,

Finding lines in an image: Hough algorithm

y b
[ ° ~ L
d \j>< :-
A ™~
X m
image space Hough (parameter) space

How can we use this to find the most likely parameters (m,b)
for the most prominent line in the image space?

» Let each edge point in image space vote for a set of
possible parameters in Hough space

» Accumulate votes in discrete set of bins; parameters with
the most votes indicate line in image space.

8/31/2016
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Voting: Generalized Hough Transform

 If we use scale, rotation, and translation invariant local
features, then each feature match gives an alignment
hypothesis (for scale, translation, and orientation of
model in image).

Model Novel image

Adapted from | ana | azehnik |

Voting: Generalized Hough Transform

* A hypothesis generated by a single match may be
unreliable,
» So let each match vote for a hypothesis in Hough space

Novel image

8/31/2016
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Gen Hough Transform details (Lowe’s system)

« Training phase: For each model feature, record 2D
location, scale, and orientation of model (relative to
normalized feature frame)

* Test phase: Let each match btwn a test SIFT feature
and a model feature vote in a 4D Hough space

» Use broad bin sizes of 30 degrees for orientation, a factor of
2 for scale, and 0.25 times image size for location

» Vote for two closest bins in each dimension
* Find all bins with at least three votes and perform
geometric verification
» Estimate least squares affine transformation
» Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

Slide credit- | ana | azebnik

Example result

Background subtract Objects recognized,  Recognition in
for model boundaries spite of occlusion
[Lowe]

8/31/2016
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Gen Hough vs RANSAC
GHT RANSAC
» Single correspondence -> * Minimal subset of
vote for all consistent correspondences to
parameters estimate model -> count
* Represents uncertainty in the inliers
model parameter space » Represents uncertainty
» Linear complexity in number in image space
of correspondences and « Must search all data
number of voting cells; points to check for inliers
beyond 4D vote space each iteration
impractical « Scales better to high-d
» Can handle high outlier ratio parameter spaces
Kristen Grauman

Video Google System

Query

1. Collect all words within j resion
query region

2. Inverted file index to find
relevant frames

3. Compare word counts

4. Spatial verification

Sivic & Zisserman, ICCV 2003

sowiel) paAdLISY

e Demo online at :
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html
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Object retrieval with large vocabularies and fast
spatial matching, Philbin et al., CVPR 2007

Query Results from 5k Flickr images (demo available for 100k set)
[Philbin CVPR’07]

World-scale mining of objects and events from
community photo collections, Quack et al., CIVR 2008

Colosseum

Auto-annotate by connecting to
content on Wikipedia!

8/31/2016
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Example Applications

Mobile tourist guide

« Self-localization

» Object/building recognition
» Photo/video augmentation

Visual Object Recognition Tutorial

[Quack, Leibe, Van Gool, CIVR’08]

B. Leibe

Web Demo: Movie Poster Recognition

@ nhttp//www.kaoaba.ch - kooaba ooserver. random_movie - Mozilla Firefox o |l

kooaba

| CHAN wniSi

WILSON

§

SHANGHAI
NOON

50’000 movie
posters indexed

Show anather poster

Query_ by_-image ; EZﬁZ i‘pu:turs with your mobile phone camera
. © in Switzerland to 5555 (Oramge Customers 079 304 5700).
from mobile phone > Garmany o 54000
. . . = everywhere else to m@kooaba.ch
available in Switzer- 3. Search restilt s sent straight to your phone
land Dore ®AA® co

Visual Object Recognition Tutorial

http://www.kooaba.com/en/products_engine.html#
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._-' Google Goggles
* Use pictures to search the web. | > Watch a video

Get Google Goggles

Android (1.6+ required)
Download from Android Market.

Send Goggles to Android phone

New! iPhone (i0S 4.0 required)
Download from the App Store.

' Send Goggles to iPhone

Landmarks

Contact Info

@ 103
RS 7

gglesuts @

Lammkoteletts vom Biobauern mit
Schaloten, Tomatencoulis und Basilikum-
Gnocchi

German (auto) » Englsh

Lamb chops from the farmers with the
shallots, tomato sauce and basil gnocchi

Recognition via feature
matching+spatial verification

Pros:

» Effective when we are able to find reliable features
within clutter

 Great results for matching specific instances

Cons:
 Scaling with number of models

 Spatial verification as post-processing — not
seamless, expensive for large-scale problems

» Not suited for category recognition.

Kristen Grauman

106



8/31/2016

Summary

* Matching local invariant features

— Useful not only to provide matches for multi-view
geometry, but also to find objects and scenes.

» Bag of words representation: quantize feature space to
make discrete set of visual words

— Summarize image by distribution of words
— Index individual words

* Inverted index: pre-compute index to enable faster
search at query time

* Recognition of instances via alignment: matching
local features followed by spatial verification

— Robust fitting : RANSAC, GHT

Kristen Grauman

Coming up

Today - sign sheet if not registered / on wait list

Read assigned papers, review 2
— Don’t be afraid of the IJCV paper!

Assignment 1 out now, due Sept 16

Caffe/CNNs tutorial (optional), Mon Sept 12, 5-7 pm
— Dinesh Jayaraman
— Subhashini Venugopalan
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