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Self-supervised 
representation learning

Kristen Grauman

UT Austin

Sept 21, 2016

Announcements

• HW1 discussion
• HW2 due Sept 30 and Oct 3 follow-up
• Grades on Canvas
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Today
• Introduction
• Self-supervision with ego-motion
• Initial paper discussion
• Experiments

• Tushar: Learning Representations for Automatic 
Colorization, Larsson et al. 

• Yiming: Unsupervised Visual Representation 
Learning by Context Prediction, Doersch et al.

• External paper
• An: Ambient Sound Provides Supervision for Visual 

Learning

3

Pre-training a representation

“Proxy” task 
that requires no 
manual labels

Labeled images
from a related domain

ી ܹܹ

Few labeled images
for target task

ી

ܹܹ

Fine-tune

ી

Few labeled images
for target task

ܹܹ

Supervised 
pre-training

Unsupervised 
pre-training
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New forms of self-supervision

• What can be our “proxy” or “pretext” task?

• Temporal coherence in video 

• Mobahi et al. 2009, Wang & Gupta 2015, Wang et al. 2016, Gao et al. 2016,…

• Audio channel – ambient sounds

• Owens et al. 2016

• Ego-motion 

• Jayaraman et al. 2015, Agrawal et al. 2015

• Spatial context, patch layout

• Doersch et al. 2015, Noroozi & Favaro 2016

• In-painting missing pixels

• Pathak et al. 2016

• Colorization

• Larsson et al. 2016, Zheng et al. 2016

• Temporal order

• Misra et al. 2016

Evaluation of self-supervised rep

How to test quality of unsupervised pre-training?

Comparisons against
• Equally supervised, but without unsup pretrain
• Fully supervised pre-training (ImageNet)
• Same network with random weights
• Counting “object-selective units” (Owens et al.)

Raw representation, +/- fine-tuning to a task
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(Ego)motion for self-supervision

Dinesh Jayaraman and Kristen Grauman

Department of Computer Science

University of Texas at Austin

The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:
self-generated motion + visual feedback
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Big picture goal: Embodied vision

Status quo: 

Learn from “disembodied” 
bag of labeled snapshots.

Goal:

Learn in the context of acting
and moving in the world.

Two formulations

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video
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Goal: Teach computer vision system the connection:
“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion vision

+

Ego-motion motor signals Unlabeled video

[Jayarman & Grauman, ICCV 2015]

Goal: Teach computer vision system the connection:
“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion vision

+

Ego-motion motor signals Unlabeled video

[Jayaraman & Grauman, ICCV 2015]



9/28/2016

7

Goal: Teach computer vision system the connection:
“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion vision

+

Ego-motion motor signals Unlabeled video

[Jayaraman & Grauman, ICCV 2015]

Ego-motion vision: view prediction

After moving:
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Ego-motion vision for recognition

Learning this connection requires:

 Depth, 3D geometry
 Semantics
 Context

Can be learned without manual labels!

Also key to 
recognition!

Our approach: unsupervised feature learning 
using egocentric video + motor signals

[Jayaraman & Grauman, ICCV 2015]

Approach idea: Ego-motion equivariance
Invariant features: unresponsive to some classes of 
transformations

ܢ ܠ݃ ≈ (ܠ)ܢ

Simard et al, Tech Report, ’98
Wiskott et al, Neural Comp ’02

Hadsell et al, CVPR ’06
Mobahi et al, ICML ’09

Zou et al, NIPS ’12
Sohn et al, ICML ’12

Cadieu et al, Neural Comp ’12
Goroshin et al, ICCV ’15

Lies et al, PLoS computation biology ’14
…
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Approach idea: Ego-motion equivariance
Invariant features: unresponsive to some classes of 
transformations

ܢ ܠ݃ ≈ (ܠ)ܢ

Invariance discards information;
equivariance organizes it. 

Equivariant features: predictably responsive to 
some classes of transformations, through simple 
mappings (e.g., linear)

ܢ ܠ݃ ≈ (ܠ)ܢ௚ܯ
“equivariance map”

Equivariant embedding 
organized by ego-motions

Pairs of frames related by 
similar ego-motion should 

be related by same 
feature transformation

left turn

right turn
forward

Learn

Approach idea: Ego-motion equivariance

time →m
ot

or
 s

ig
na

l

Training data
Unlabeled video + 

motor signals

[Jayaraman & Grauman, ICCV 2015]
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Equivariant embedding 
organized by ego-motions

left turn

right turn
forward

Learn

Approach idea: Ego-motion equivariance

time →m
ot

or
 s

ig
na

l

Training data
Unlabeled video + 

motor signals

[Jayaraman & Grauman, ICCV 2015]

∥ (௜ܠ)ીܢ௚ܯ − (௜ܠ݃)ીܢ ∥૛

Ego-motion equivariant feature learning

௜ܠ

௜ܠ݃

(௜ܠ)ીܢ

(௜ܠ݃)ીܢ

௚ܯ௚ܯ

Desired: for all motions ݃ and all images ܠ,
ીܢ ܠ݃ ≈ (ܠ)ીܢ௚ܯ

ી

ી

Given:

ી ௞ܠ(௞ܠ)ીܢ ܹܹ softmax loss ܮ஼(ܠ௞, y௞)

Unsupervised training

Supervised training

class y௞ ી, ܯ௚ and ܹ jointly trained

݃

[Jayaraman & Grauman, ICCV 2015]
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Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 
(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10

Results: Recognition

Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping. CVPR 2006
Agrawal, Carreira, Malik, Learning to see by moving. ICCV 2015

A
cc

u
ra

cy

• Purely unsupervised 
feature learning

• k-nearest neighbor scene 
classification task in 
learned feature space

o Unlabeled video: KITTI
o Images: SUN, 397 classes
o 50 labels per class

0

1

2

3

4

5

6

7

8

Invariant 
features from 

video
Regression 

task for 
egomotion
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KITTI ⟶ SUN

Ego-motion equivariance as a regularizer

397 classes
re

c
o

g
n

it
io

n
 a

c
c

u
ra

c
y 

(%
)

**Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML’09 

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR’06

Results: Recognition

6 labeled training 
examples per class

KITTI⟶KITTI

NORB⟶NORB

Up to 30% accuracy increase 
over state of the art!

0.25

0.70

1.02

1.21

1.58

invariance

Two formulations

1. Learning representations 
tied to ego-motion

2. Learning representations 
from unlabeled video
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Learning from arbitrary
unlabeled video?

Unlabeled video 
+ ego-motion

Unlabeled video

Background: Slow feature analysis
[Wiskott & Sejnowski, 2002]

Figure: Laurenz Wiskott, http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-OptimizationProblem.png

Find functions g(x) that map

quickly varying input 
signal x(t)

slowly varying 
features y(t)
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Background: Slow feature analysis
[Wiskott & Sejnowski, 2002]

Figure: Laurenz Wiskott, http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-OptimizationProblem.png

quickly varying input 
signal x(t)

slowly varying 
features y(t)

Find functions g(x) that map

• Existing work exploits 
“slowness” as temporal 
coherence in video → learn 
invariant representation

[Hadsell et al. 2006; Mobahi et al. 2009; 
Bergstra & Bengio 2009; Goroshin et al. 
2013; Wang & Gupta 2015,…]

• Fails to capture how visual 
content changes over time

Background: Slow feature analysis
[Wiskott & Sejnowski, 2002]

in learned embedding
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• Higher order temporal 
coherence in video → learn 
equivariant representation

Our idea: Steady feature analysis

[Jayaraman & Grauman, CVPR 2016]

Second order slowness operates on frame triplets:

in learned embedding

Equivariance ≈ “steadily” varying frame features!  
d²ܢી(ܠt)/dt²≈ ૙

[Jayaraman & Grauman, CVPR 2016]

Our idea: Steady feature analysis
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Datasets
Unlabeled video Target task (few labels)

Human Motion 
Database (HMDB)

PASCAL 10 Actions

KITTI Video SUN 397 Scenes

NORB NORB 25 Objects

32 x 32 images or 96 x 96 images

Results: Steady feature analysis

**Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML’09 

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR’06

*

**

Multi-class recognition accuracy



9/28/2016

17

Pre-training a representation

Unlabeled video

Labeled images
from a related domain

ી ܹܹ

Few labeled images
for target task

ી

ܹܹ

Fine-tune

ી

Few labeled images
for target task

ܹܹ

Supervised 
pre-training

Unsupervised 
“pre-training”

Results: Can we learn more from unlabeled 
video than “related” labeled images? 

HMDB
(unlabeled video)

PASCAL 
(few img labels)
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Results: Can we learn more from unlabeled 
video than “related” labeled images? 

CIFAR-100 
(labeled for other 

categories)

HMDB
(unlabeled video)

PASCAL 
(few img labels)

Results: Can we learn more from unlabeled 
video than “related” labeled images? 

CIFAR-100 
(labeled for other 

categories)

HMDB
(unlabeled video)

PASCAL 
(few img labels)

Better even than providing 50,000 extra manual 
labels for auxiliary classification task!
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Summary

• Visual learning benefits from

– context of action and motion in the world

– continuous self-acquired feedback

• New ideas:

– “Embodied” feature learning using both visual and motor 
signals

– Feature learning from unlabeled video via higher order 
temporal coherence

Papers

• Learning Image Representations Tied to Ego-
Motion.  D. Jayaraman and K. Grauman.  In 
Proceedings of the IEEE International Conference on 
Computer Vision (ICCV), Santiago, Chile, Dec 2015.

• Slow and Steady Feature Analysis: Higher Order 
Temporal Coherence in Video.  D. Jayaraman and K. 
Grauman.  In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), Las 
Vegas, June 2016. 


