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Paper Review

Human Reporting Bias
» Captions, tags, keywords ...
» Report only salient/important objects.

» Cause visually biased classifiers.



Paper Review

Human Reporting Bias
» Captions, tags, keywords ...
» Report only salient/important objects.

» Cause visually biased classifiers.

This paper
» Model the bias as hidden variables.

» Improve classification of visual concepts.



Examples
(from MSCOCO dataset)

Captions:

» a small dog is on a wood
desk

> a dog is sitting on a desk
behind a computer.

» dog sitting on a desk next to
a monitor

> a little dog with a leash

laying on a desk behind a
computer monitor.

> a dog sits on a desk behind
a computer
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Detection labels
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Two Classifiers

1. Visual Presence Classifier v

2. Relevance Classifier r



Two Classifiers

1. Visual Presence Classifier v

2. Relevance Classifier r
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My experiments

Analyze the relevance classifier r

1. r with varying objects sizes, orientations
(is r sensitive to sizes and orientations?)
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My experiments

Analyze the relevance classifier r
1. r with varying objects sizes, orientations
(is r sensitive to sizes and orientations?)
2. Evaluate the accuracy or r.
(in detecting (un)reported objects)

3. Evaluate the learned ‘representation’
(as features in scene classification).



Reportability with varying size

(image from the paper, black line = prob. of not reporting)

Large
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» Small size correlates with not reported.



Reportability with varying size
(image from the paper, black line = prob. of not reporting)
1
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» Small size correlates with not reported.
» Question: Does r capture this?



Experiment: varying sizes
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Experiment: varying sizes
(Average over 1000 images in test set and
over common objects: glove, phone, backpack, ...)

Predicted Prob. Report

Image Size



Experiment: varying sizes
(Average over 1000 images in test set and
over common objects: glove, phone, backpack, ...)

Observations:

1. (Almost) same from 100% to
60%
2. But increase from 60% to 20%
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Experiment: varying sizes
(Average over 1000 images in test set and
over common objects: glove, phone, backpack, ...)
Observations:
1. (Almost) same from 100% to
60%
2. But increase from 60% to 20%
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(Possible) explanation:
1. r is not sensitive to size.
- . (it predicts based on other
. features)
2. Objects too small — not
recognized — default to
reported
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Experiment: varying orientations
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Experiment: varying orientations

(Average over 1000 images in test set and
over common objects: glove, phone, backpack, ...)

Predicied Prob. Report
)
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Experiment: varying orientations

(Average over 1000 images in test set and
over common objects: glove, phone, backpack, ...)

o7 > r sensitive to orientations.

Predicied Prob. Report
o
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e » Unusual rotation — not
recognized — ...
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Accuracy of r
(Surprisingly not reported by the paper)

For each concept:
» Negative instances: object present but no captions mentioned.

» Positive instances: object present and captions mentioned.
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Accuracy of r
(Surprisingly not reported by the paper)

For each concept:
» Negative instances: object present but no captions mentioned.
» Positive instances: object present and captions mentioned.
> Metric: AUC of r prediction.
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Accuracy of r

(over all images in test set)
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Evaluate the learned ‘representation’

» r outputs 4 ‘probabilities’ for each concept.
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Evaluate the learned ‘representation’

» r outputs 4 ‘probabilities’ for each concept.
» 1000 concepts — 4000-dim vector.
» Assumed to be features for scene classification.
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Evaluate the learned ‘representation’

v

r outputs 4 ‘probabilities’ for each concept.

v

1000 concepts — 4000-dim vector.

v

Assumed to be features for scene classification.

v

Pretext task = predict human reporting bias.
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Evaluate the learned ‘representation’

v

r outputs 4 ‘probabilities’ for each concept.

v

1000 concepts — 4000-dim vector.

Assumed to be features for scene classification.

v

v

Pretext task = predict human reporting bias.

v

Same data as in Assignment 2.
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Evaluate the learned ‘representation’
(LinearSVM, no finetuning, test set 2)

Features Accuracy(%)
HumanBias 58.24
Alex 81.36
HumanBias + Alex 82.62
ResNet 87.12
HumanBias + ResNet | 87.73



Evaluate the learned ‘representation’
(LinearSVM, no finetuning, test set 2)

Features Accuracy(%)
HumanBias 58.24 » Features are informative
Alex 81.36

C I tary to Al
HumanBias + Alex 82.62 g RZ:\Imeen ary to Alex &
ResNet 87.12
HumanBias 4+ ResNet | 87.73
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Confusion Matrices for Human Bias
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Predicted label



Confusion Matrices for Human Bias

Confusion matrix

istinctive, mix

> Less d

categories.
e.g.

ion,chalet.

exterior,mansion

0.0

12qe| aniL

POOOCO0OO0O000000O00O0O0MOOO0O0O0O0O0 Jousyursng
bocococococoooooooccocoooroo o {wmpmn
Poooooocoo0o0o0o0o000o0000O0 oo~ o o uspieb|ewoy
hoccomoooooocooccomomnofle oomm
POOOOOO0OOO0OO0OO0O0O0O0O0O0O0O0O0Oo © © o o {doys soys
boocococococooooocooccoooooooo oo usum
Poocooooooooooooooomooo o o o-uspiedageisbsn
boococoococooooooocooooooooooolues
boococoococooooooccomoooooooolmpu
boocococococoooococococofecmnoocomo olpeo
pPpooNooooow~ooo N m N oo N o m s o{ap bupue
brrnococococoofloocofloroiooooooo]pmmus
FoocoonomoooofoooB8ooonoo o~ {wobugeisd
boococococormoooBoccomooocooaoompu
pooocoococococoofcocoocooooooo oo lemeruen
boocococococoooooooccoooooooooo]assmn
cccornocofeccccoconooomoo oo emsomn
PooooooNOOOOOOOOOOOOOO O O O-woosjeydsoy
erflrcoc@ecr~rcococcos ol @ un oo pen
pooor o ©CoOoMMOO OO oOOMO O O ©-{Wooluop
Ppooo o onoocoroooooooo oo~ o o{wooibul
boofleccooornoocccoooooooooolpus
boncoocoooooocooccooooooooooomme
bfl<ccccoomoocoococmoonooo o o]mepea
SS 59 EEBE LS PEESY¥R 525585565
sicliezigiofteiziaciciid;
§5°% Fe ggEiigigess S2gsiig
£° £s 5° f 378 g v f 3
s = g 5 g = 2 £
3 £ g g 2

g

Predicted label

16



Summary

v

r classifies into reported/unreported by human.

v

Sensitive to orientations, not to scale.

v

Good performance in AUC.

Learn informative features.

v
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Summary

v

v

Sensitive to orientations, not to scale.

v

Good performance in AUC.

Learn informative features.

v

Questions?

r classifies into reported/unreported by human.
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