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Components of Shadow-Draw

* Inverted File Structure for indexing
* Database of images
e Corresponding Edge maps

* Query method
* Dynamically retrieves matching images
* Aligns them to evolving drawing
* Weighs them based on matching score, to form shadow

e Ul
* Displays a shadow of weighted edge maps beneath the user’s drawing



Database Creation

* Image Acquisition
* Edge Extraction
* Patch Description

* Min-hash Encoding



Image Acquisition

* 30k images spanning 40 categories obtained from internet
* Scaled to obtain 300 x 300 images

Problems Handled:
1. Direct Sketch images are not abundant

2. Diverse Background - Still has good
edges you might want to draw
3. Photographer bias to rescue




Database Creation

* Image Acquisition
* Edge Extraction
* Patch Description

* Min-hash Encoding



Edge Extraction (Step 1)

 Compute the local edge magnitude (pm) and orientation (po)at each
pixel using steerable filters

Input Output



Edge Extraction (Step 2)

* Normalize the edge magnitude

* Need to detect long, coherent edges even when faint (i.e., not simply
edges with strong magnitude)

Ifiput Output



Edge Extraction (Step 3)

* Message Passing for length estimation
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See the difference




Canny Edge Detection (Non Max Suppression)

The Canny edge detector

Non-maximum suppression
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Credits - Kristen Grauman (both images)




Database Creation

* Image Acquisition
* Edge Extraction

e Patch Description
* Min-hash Encoding



Patch Descriptors

* Low Dimensional BiCE descriptor
* Encodes a histogram of edge positions and orientations

* Done over overlapping 60 x 60 patches with 50 % overlap
* As mapping an edge image E to incomplete and evolving drawing.

* SIFT / Daisy vs BiCE
* Former relies on relative strength of edge magnitudes to provide
discriminability
* Thus reduced performance compared to BiCE on our task, where edge
strengths are not important.



BiCE descriptor (Steps)

1. Local Normalization of image patch gradients
 Remove variation in relative gradient magnitudes

2. Binning of normalized gradients
* using position, orientation, and local linear length of image

3. Binarization of normalized gradient histogram
* Encodes the presence of edges

Presence / absence of Edge is preserved across matching patches,
There magnitude might not.



Ste p 1 Normalized Gradient (g_cap)

Original Gradient (g)
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Orientation aligned binning
Robustness to orientation changes
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Initial Binning w.r.t. just position and orientation.



Increa
Long Coherent

Calculate Edge Length

L(z',0) = Z H(z',y,0).
y/

Discretization into 2 bins by weight
based normalized gradient splitting

_ lp —
A(l,) = max(0, min(1, 3 )

Alpha, beta = Tunable thresholding params

sing Discriminability
Edges vs Shorter Textured Edges

With gaussian Blur along x,y, theta dimension

WHY ??



Step 3 (Subsampling and Binarization)

e B AL PR UGN RS
Bl il G IS

 Subsample to discrete set of values for x, y, theta and length

 Value =1 (top T percent of bins with highest frequency)
 Value =0 (rest)

* Flatten to get the BiCE desciptor



Database Creation

* Image Acquisition

* Edge Extraction

* Patch Description

* Min-hash Encoding



Retrieval and Clustering Efficiency

* Reduce dimension = Improve Clustering = Improve Retrieval
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J(A, B) =

Preserves Maximum Jaccard Similarity



Minhashing (I apologize for my terrible animation)

What are these vectors ?
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Sketches (n, k) and Inverted Indexing

* To increase precision * To increase recall
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Components of Shadow-Draw

* Inverted File Structure for indexing
* Database of images
* Corresponding Edge maps

* Query method
* Dynamically retrieves matching images
e Aligns them to evolving drawing
* Weighs them based on matching score, to form shadow

* Ul
* Displays a shadow of weighted edge maps beneath the user’s drawing



Query Steps

* Dynamically Retrieving matching Images
° A/igning Matching Images to Drawn Sketch
* Shadow Creation by Weighting



Image Matching

* Obtain Candidate Matches
* Align Candidate Matches with the partially drawn sketch
* Assign weight to each candidate’s edge image

e Construct Shadow Image

Verify
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Candidate Match Finding

Top 100 images and

Resultant Candidate Format CorreSpo_nding offset
(Image Id , patch offset-x direction, patch offset-y direction) f‘;; the highly voted
offset
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sub-window (IDxd, xd,)
Edge Image of Sketch
X offset of
the candidate
Vote count for patch for each patch from
candidate image the user

sketch patch



Query Steps

* Dynamically Retrieving Matching Images
¢ Aligning Matching Images to Drawn Sketch

* Shadow Creation by Weighting



Aligning Candidate Matches

To(x) = Y _ sin(0(pz, py)) E(p, py)

p
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To(s) = D _foos|(0(02: 22)) E (Do, py)
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Query Steps

* Dynamically Retrieving Matching Images
° Aligning Matching Images to Drawn Sketch
 Shadow Creation by Weighting



Weight Image

Image Weighting




Shadow Image Construction

/ Blending Weight Image
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Shadow Image

Edge Candidate Image

Global matching term
\ Spatially varying
/ match term
C( .

3 variables: /

* Global matching term (v)

* Spatially varying matching term (V) \
Visibility Enhancer

 Visibility Enhancer (alpha)

Normalization Term



Image not oriented, the edges it captures are oriented

Obtaining Global Matching Term (V)
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Global Matching Spatial Matching

Vi = G(97, 4¢) hi =9 (p) —9; (p)
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Visibility Enhancer (alpha)
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Why is it a visibility enhancer ?



Experimental Findings
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Poor vs Average vs Good

Average # of votes for each group for all object categories
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Complexity

Average # of votes for users rated as "Average” (7 users)
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 Strengths
e Can help drawing structurally complex objects
* Helps preserve the unique style of the users
* |s a real-time algorithm

* Weaknesses
* Leads to good shadows only if the initial user sketch is not all over the place.
Otherwise might confuse the user.
* A tussle between guidance and freedom.

e Sketching flow bias — The way we start drawing the sketch might affect the
shadow retrieved, and thus lead to confusion initially, if the user is not very
certain of each detail.
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