ShadowDraw

Real-Time User Guidance for Freehand Drawing

Harshal Priyadarshi

Demo

ShadowDraw Real-Time User Guidance for Freehand Drawing

Yong Jae Lee U. Of Texas at Austin C. Lawrence Zitnick Microsoft Research Michael F. Cohen Microsoft Research

SIGGRAPH 2011

Components of Shadow-Draw

Inverted File Structure for indexing

- Database of images
- Corresponding Edge maps
- Query method
 - Dynamically retrieves matching images
 - Aligns them to evolving drawing
 - Weighs them based on matching score, to form shadow
- UI
 - Displays a shadow of weighted edge maps beneath the user's drawing

Database Creation

- Image Acquisition
- Edge Extraction
- Patch Description
- Min-hash Encoding

Image Acquisition

• 30k images spanning 40 categories obtained from internet

• Scaled to obtain 300 x 300 images

- 1. Direct Sketch images are not abundant
- 2. Diverse Background Still has good edges you might want to draw
- 3. Photographer bias to rescue

Database Creation

- Image Acquisition
- Edge Extraction
- Patch Description
- Min-hash Encoding

Edge Extraction (Step 1)

 Compute the local edge magnitude (pm) and orientation (po)at each pixel using steerable filters

Input

Output

Edge Extraction (Step 2)

- Normalize the edge magnitude
- Need to detect long, coherent edges even when faint (i.e., not simply edges with strong magnitude)

 $\hat{p}_m = rac{p_m - \mu_w}{\sigma_w + \epsilon},$

lñṗut

Output

Edge Extraction (Step 3)

• Message Passing for length estimation

$$egin{aligned} m_0^t(p) &= \sum_q w_lpha(q) \cdot w_ heta(q) \cdot (\hat{q}_m + m_0^{t-1}(q)), \ m_1^t(p) &= \sum_q w_lpha(q) \cdot w_ heta(q) \cdot (\hat{q}_m + m_1^{t-1}(q)). \ w_ heta(q) &= exp(-(p_ heta-q_ heta)^2/2\sigma_ heta^2), \end{aligned}$$

$$e^l(p) = m_0^t(p) + m_1^t(p) + \hat{p}_m$$

 $e^o(p) = p_o$

Output

Input

See the difference

Canny Edge Detection (Non Max Suppression)

The Canny edge detector

How to turn these thick regions of the gradient into curves?

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

Credits - Kristen Grauman (both images)

Database Creation

- Image Acquisition
- Edge Extraction
- Patch Description
- Min-hash Encoding

Patch Descriptors

- Low Dimensional BiCE descriptor
 - Encodes a histogram of edge positions and orientations
- Done over overlapping 60 x 60 patches with 50 % overlap
 - As mapping an edge image E to incomplete and evolving drawing.
- SIFT / Daisy vs BiCE
 - Former relies on relative strength of edge magnitudes to provide discriminability
 - Thus reduced performance compared to BiCE on our task, where edge strengths are not important.

BiCE descriptor (Steps)

- 1. Local Normalization of image patch gradients
 - Remove variation in relative gradient magnitudes
- 2. Binning of normalized gradients
 - using **position**, orientation, and local linear length of image
- 3. Binarization of normalized gradient histogram
 - Encodes the presence of edges

Presence / absence of Edge is preserved across matching patches,

There magnitude might not.

Normalized Gradient (g_cap)

 $g_p = \|[f_x(p) \ f_y(p)]^{\mathrm{T}}\|_2.$

 $\bar{g}_p = \sum g_q \mathcal{N}(q; p, \sigma_s),$ $q \in N$

 $\hat{g}_p = rac{g_p}{\max(\bar{g}_p, \epsilon)},$

Step 2

$$\left[egin{array}{c} x_p' \ y_p' \end{array}
ight] = {f R}(heta_p) \left[egin{array}{c} x_p \ y_p \end{array}
ight],$$

Orientation aligned binning Robustness to orientation changes

Initial Binning w.r.t. just position and orientation.

Increasing Discriminability Long Coherent Edges vs Shorter Textured Edges

Calculate Edge Length

$$L(x', \theta) = \sum_{y'} H(x', y', \theta).$$

Discretization into 2 bins by weight based normalized gradient splitting $\Delta(l_p) = \max(0, \min(1, \frac{l_p - \alpha}{\beta})).$

Alpha, beta \rightarrow Tunable thresholding params

With gaussian Blur along x,y, theta dimension

WHY ??

Step 3 (Subsampling and Binarization)

- Subsample to discrete set of values for x, y, theta and length
- Value = 1 (top T percent of bins with highest frequency)
- Value = 0 (rest)

• Flatten to get the BiCE desciptor

Database Creation

- Image Acquisition
- Edge Extraction
- Patch Description
- Min-hash Encoding

Retrieval and Clustering Efficiency

• Reduce dimension \rightarrow Improve Clustering \rightarrow Improve Retrieval

$$J(A,B) = rac{|A \cap B|}{|A \cup B|}$$

Preserves Maximum Jaccard Similarity

Minhashing (I apologize for my terrible animation)

What are these vectors ?

Index	Vector A	Vector B	H(Index)
1	1	0	4
2	1	0	6
3	0	1	1
4	0	0	5
5	1	0	3
6	0	0	2

Index	Vector A	Vector B
1	5	3

Sketches (n, k) and Inverted Indexing

• To increase precision

Index	Vector A	Vector B
1	5	3
2	2	1
3	1	1
4	4	6
5	3	2
6	1	6

K hash functions

• To increase recall

Components of Shadow-Draw

- Inverted File Structure for indexing
 - Database of images
 - Corresponding Edge maps
- Query method
 - Dynamically retrieves matching images
 - Aligns them to evolving drawing
 - Weighs them based on matching score, to form shadow
- UI
 - Displays a shadow of weighted edge maps beneath the user's drawing

Query Steps

- **Dynamically Retrieving** Matching Images
- Aligning Matching Images to Drawn Sketch
- Shadow Creation by Weighting

Image Matching

- Obtain Candidate Matches
- Align Candidate Matches with the partially drawn sketch
- Assign weight to each candidate's edge image
- Construct Shadow Image

Candidate Match Finding

Resultant Candidate Format

(Image Id , patch offset-x direction, patch offset-y direction)

sketch patch

Top 100 images and

corresponding offset

for the highly voted

Query Steps

- **Dynamically Retrieving** Matching Images
- Aligning Matching Images to Drawn Sketch
- Shadow Creation by Weighting

Aligning Candidate Matches

$$T_x(x) = \sum_p \sin(\tilde{ heta}(p_x, p_y)) \tilde{E}(p_x, p_y)$$

 $\sin(heta(p_x + d_x + x, p_y + d_y)) E(p_x + d_x + x, p_y + d_y)$

$$\begin{split} T_{\underline{\mathsf{Y}}}(\underline{\mathsf{y}}) &= \sum_{p} \cos(\tilde{\theta}(p_x, p_y)) \tilde{E}(p_x, p_y) \\ & \boxed{\cos(\theta(p_x + d_x + x, p_y + d_y)) E(p_x + d_x + x, p_y + d_y)} \end{split}$$

Query Steps

- **Dynamically Retrieving** Matching Images
- Aligning Matching Images to Drawn Sketch
- Shadow Creation by Weighting

Weight Image

Image Weighting

Image not oriented, the edges it captures are oriented

Obtaining Global Matching Term (V)

Spatial Matching Global Matching $V_i = \mathcal{G}(\vartheta_i^+, 4\varphi)$ $h_i = \sum \vartheta_i^+(p) - \vartheta_i^-(p)$ **Average of 5** highest h_i from the candidate set $v_i = \max\left(0, \left(\frac{h_i - \gamma h^*}{h^* - \gamma h^*}\right)^n\right).$

Gaussian Blur on the positive correlation image

Visibility Enhancer (alpha)

Why is it a visibility enhancer?

Experimental Findings

Robustness to _____ ????

Poor vs Average vs Good

Complexity

• Strengths

- Can help drawing structurally complex objects
- Helps preserve the unique style of the users
- Is a real-time algorithm

Weaknesses

- Leads to good shadows only if the initial user sketch is not all over the place. Otherwise might confuse the user.
- A tussle between guidance and freedom.
- Sketching flow bias The way we start drawing the sketch might affect the shadow retrieved, and thus lead to confusion initially, if the user is not very certain of each detail.

References

- Original Paper
 - <u>http://vision.cs.utexas.edu/projects/shadowdraw/ShadowDrawSiggraph11.pd</u>
 <u>f</u>
- Supporting Papers
 - Long Edge Detector
 - http://grail.cs.washington.edu/projects/gradientshop/demos/gs_paper_TOG_2009.pdf
 - BiCE descriptor
 - <u>http://larryzitnick.org/publication/BiCE_ECCV10.pdf</u>

Thank You