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Motivation...

e Current Computer Vision

o Annotations subjectively
defined

o Intermediate levels of
computation??




Motivation...

The Human Visual System

SENSOrs =i NEIWOIK — compute

low-level processing high-level processing

e Lack of large scale datasets that provide recordings of the workings of the
human visual system




Previous Work...

e Study of Gaze patterns in Humans

A person browsing
reddit with the F-shaped
pattern
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Previous Work...

e Study of Gaze patterns in Humans
o Inter-observer consistency
Bottom-up Features
Human Fixations
Models of saliency
Uses of Saliency maps
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Previous Work...

Study of Gaze patterns in Humans
Inter-observer consistency
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Bottom-up Features
Human Fixations
Models of saliency
Uses of Saliency maps
Previous data sets

At most few hundred videos
recorded under free viewing
conditions
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Contributions... (1)

d Extended existing large scale datasets Hollywood-2 and UCF Sports

Answer phone Drive car
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Get out of car Hand shake
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Contributions... (2)

d  Dynamic consistency and alignment measures

AOI| Markov
Dynamics

Temporal AOI
Alignment
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Contributions... (3)

d  Training an End-to-End automatic visual action recognition system
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Data Collection...

Hollywood-2 Movie Dataset

112 classes
69 movies

.823/884 split -

'487k frames
20 hr

Get out of car Hand shake

Sit down

N

Situ up_ Stand up

i'f*@

iLargest and Most
'challenging dataset

rAnswering phone, :
:driving a car, !
1eating, fighting, etc. ;
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Data Collection...

UCF Sports Action Dataset

iy

eboarding

Y» Broadcast of television channels

2> 150 videos covering 9 sports action classes

> Diving, golf swinging, kicking, etc..

= ﬂ

Kickin,

-

Ry

Riding Horse
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Data Collection...

Extending the two data sets

Context
Recognition

19
Humans

Many other
Specifications

J

SMI iView X HiSpeed

1250 Tower-Mounted

Eve Tracker

Timings/Durations
& Breaks

1)

Recording Environment

What actions did you identify?

answer phone
drive car

- eat

fight
get out of car

=+ handshake
-~ hug

kiss

run

sit down
situp

« stand up

Continue [F11]

Recording Protocol
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Static & Dynamic Consistency

Action Recognition by Humans

e Goal & Importance

AnswerPhone
DriveCar

e Human errors
o Co Occurring Actions
o False Positives
o Mislabeling Videos

HandShake + StandUp
FightPerson + Run
Run + StandUp

ground truth

human label

10.6

10.5

104
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Static Consistency Among Subjects

e How well the regions fixated by human subjects agree on a frame by
frame basis?

e FEvaluation Protocol
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Static Consistency Among Subjects
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The Influence of Task on Eye Movements
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The Influence of Task on Eye Movements

Results -

dataset task A task B p-value Z;gz?]fggi;
Hollywood-2 action recognition free viewing 0.14 no
Hollywood-2 action recognition | context recognition 0.01 yes
UCF Sports action recognition free viewing 0.75 no
UCF Sports action recognition | context recognition 0.04 yes
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Dynamic Consistency Among Subjects

e Spatial distribution - highly consistent
e Significant consistency in the order also??

e Automatic Discovery of AOIs & 2 metrics
o AOIl Markov dynamics
o Temporal AOI alignment
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Scanpath representation

— subject 2
e Human fixations - tightly clustered iy ) ;' ‘ l‘ :|
mirror N

e Assigning to closest AOI

; 5 00 1% 200 250
e Trace the scan path time (frames)
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Automatically Finding AOls

e C(lustering the fixations of all subjects in a frame

—
| Start
| K-Means
| with 1
| cluster

MSuccessively Increase |
| until the sum of squared |

|
- | errors drops below a |

| threshold :

MEach fixation ~
assigned to the

| closest AOI at

| the time of

| creation

| Each resulting track
| becomes an AOI

24




Automatically Finding AOls

frame 145 frame 215

frame 230
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AOI Markov Dynamics

e Transitions of human visual attention between AOIs by..

Probability of
Transitioning to
AOIl “‘b” @ time t

Fixated at
AOl “a” @
time t-1
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Temporal AOI Alignment

e Longest Common Subsequence??

e Able to handle gaps and missing elements

A B c D
0 0 0 0
_______
1
11 1 1 1
_—_1'- ‘
=
-----
1 1 2 % 2
_____ :
T
i
1 2 2 i 2
*®
------
i) 2 2 13 4
=Ml
1
T
1
i 2 2 3!
w.
i 2 2 3
LCS - "ACDA"

27



Evaluation Pipeline

Interest
Point
Operator

(@

Input: A video
Output: A set of
spatio-temporal
coordinates

= Descriptor

(@

Spacetime
generalization
of the HoG &
MBH from
optical flow

Visual
Dictionary

Cluster
descriptors into
4000 Visual
words using
K-means

RBF-2 kernel
and Multiple
Kernel Learning
(MKL)
framework
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Human Fixation Studies

o percent of human
Human vs. Computer Vision Operators action fixated spacetime
Harris corners
. . . . {a)
e Fixations as interest point detector AnswerPhone 6.2%
DrveCar L
. . Eat 6. 4%
e Findings FighiPerson 167
o Low correlation E"E“;’E;CEIE g-;{‘i
dndsna . i
o Why?? HugPerson T6%W
Kizs 4 8%
Run 6. 0%
St own 6. 2%
SitUp . 30
StandUp 6.0%
| Mean | 5.8%




Saliency maps encoding only the weak surface structure of fixations (no time
ordering), can be used to boost the accuracy of contemporary methods
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Saliency Map Prediction

haselines gur motion features (MF) ]
Static feature AUC KL feature ALC KL
(a) (b} (a) (b}
Features uniform basaline 0.500 | 18.63 flow magnitude 0.626 18.57
central bias (CBE) 0.840 | 15.93 pb edges with fow 0.5582 17.74
human 0.936 | 1012 flow bimodality 0.637 | I7.63
——— iz mess AL 17 2]
Motion C stalic features (SF) D Wtﬂ z
color Tealur 6dd | 17.00 ctor | 0.743 | 14.95
Features subbands [64] 0634 | 17.75 @ combinations
liti& Koch channels [18] | 0.5958 | 16.0%8 SF 151 o e e GG
saliency map [36] 0.702 | 1717 SF + CB [5] 0.861 15.06
AUC & forizon Geector [56] 74l | 15.45 MF 062 1562
. face detector [58] 0.579 | 16.43 MF + CB 0.830 | 1507
Spatial KL car delector [59] 0.500 | 18.40 SE-ME =iz | 1o
Divergence person detector [39] 0.566 | L7.13 ﬂ| SF + MF + CB 0.B71 | 15.80




Automatic Visual Action Recognition

(a) original image (b) ground truth saliency (d) flow magnitude (e) pb edges with flow

(g) Harris cornerness (h) HoG-MBH detector (i) MF (j» SF (k) SF + MF (1) SF + MF + CB

ground truth/CB

around truth/CB HoG-MBH detector/CB

HoG-MEBEH detector/CB image

S § e

ground truth/CB HoG-MBH detector/CB image ground truth/CB HoG-MBH detector/CB
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Conclusions

Combining Human + Computer Vision
Extending Dataset

Evaluating Static & Dynamic Consistency
Human Fixations -> Saliency Maps
End-to-End Action Recognition System
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