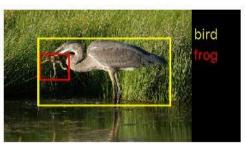
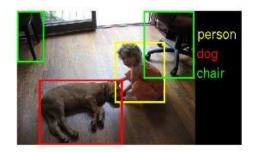
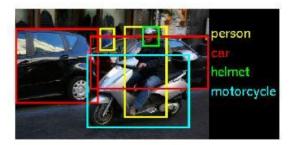
Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition

Stefan Mathe, Cristian Sminchisescu

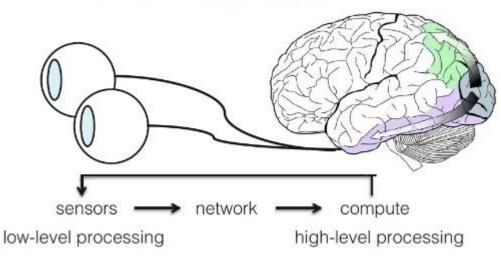



Presented by Mit Shah

Motivation...


• Current Computer Vision

 Annotations subjectively defined



 Intermediate levels of computation??

Motivation...

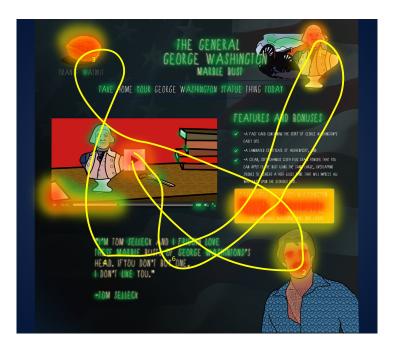
The Human Visual System

• Lack of large scale datasets that provide recordings of the workings of the human visual system

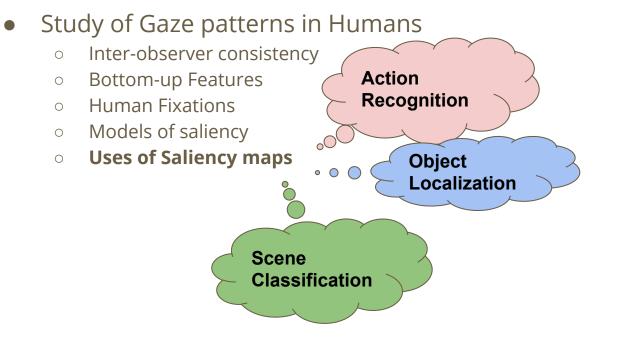
• Study of Gaze patterns in Humans

A person browsing reddit with the F-shaped pattern

- Study of Gaze patterns in Humans
 - Inter-observer consistency



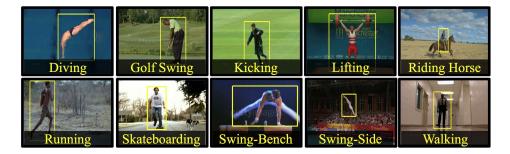
- Study of Gaze patterns in Humans
 - Inter-observer consistency
 - Bottom-up Features



- Study of Gaze patterns in Humans
 - Inter-observer consistency
 - Bottom-up Features
 - Human Fixations

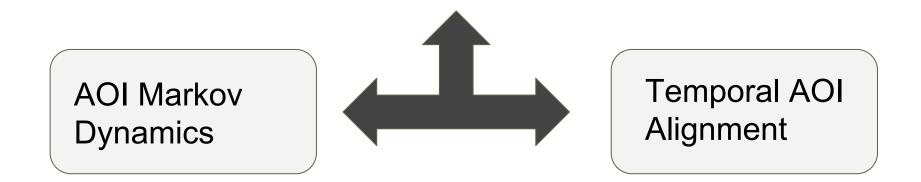
- Study of Gaze patterns in Humans
 - Inter-observer consistency
 - Bottom-up Features
 - Human Fixations
 - Models of saliency

• Study of Gaze patterns in Humans


- Inter-observer consistency
- Bottom-up Features
- Human Fixations
- Models of saliency
- Uses of Saliency maps
- Previous data sets

At most few hundred videos recorded under free viewing conditions

Contributions... (1)


• Extended existing large scale datasets **Hollywood-2** and **UCF Sports**

Contributions... (2)

Dynamic consistency and alignment measures

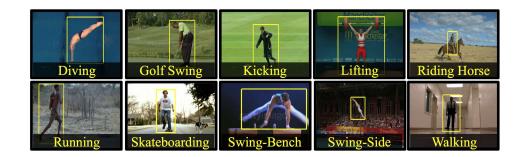
Contributions... (3)

Training an End-to-End automatic visual action recognition system

Data Collection...

Hollywood-2 Movie Dataset

Largest and Most challenging dataset

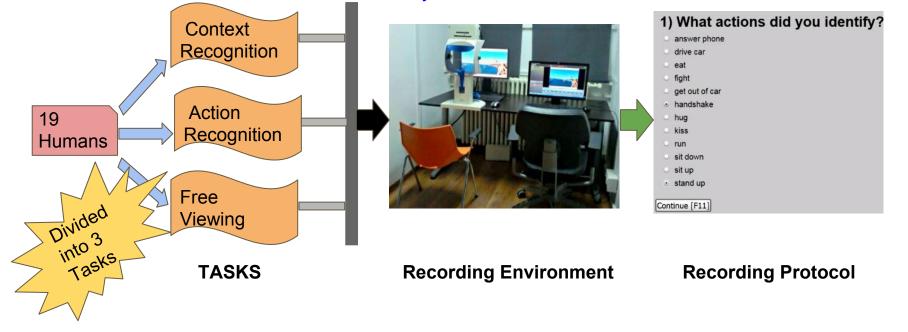

12 classes 69 movies 823/884 split 487k frames 20 hr

Answering phone, driving a car, eating, fighting, etc.

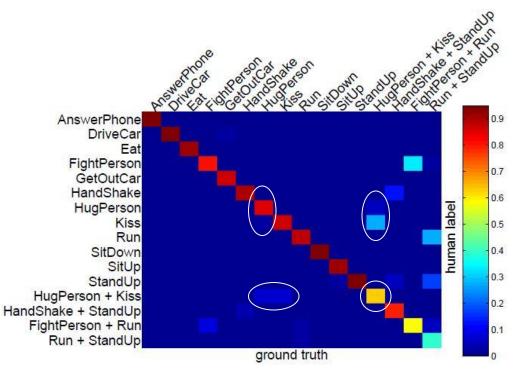
Data Collection...

UCF Sports Action Dataset

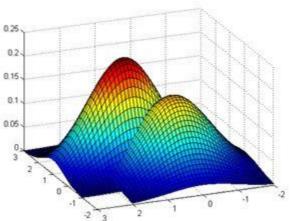
- Broadcast of television channels
- > 150 videos covering 9 sports action classes
- Diving, golf swinging, kicking, etc..


Data Collection...

Extending the two data sets


<u>SMI iView X HiSpeed</u> <u>1250 Tower-Mounted</u> <u>Eve Tracker</u>

Static & Dynamic Consistency


Action Recognition by Humans

- Goal & Importance
- Human errors
 - Co Occurring Actions
 - False Positives
 - Mislabeling Videos

Static Consistency Among Subjects

- How well the regions fixated by human subjects agree on a frame by frame basis?
- Evaluation Protocol

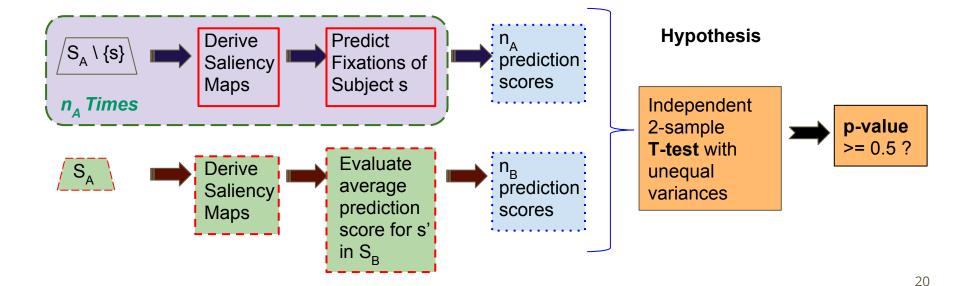
Static Consistency Among Subjects

frame 18

frame 15

frame 22

frame 19


frame 31

frame 12

frame 7

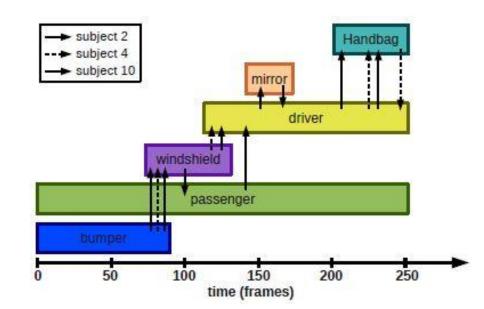
The Influence of Task on Eye Movements

The Influence of Task on Eye Movements

Results -

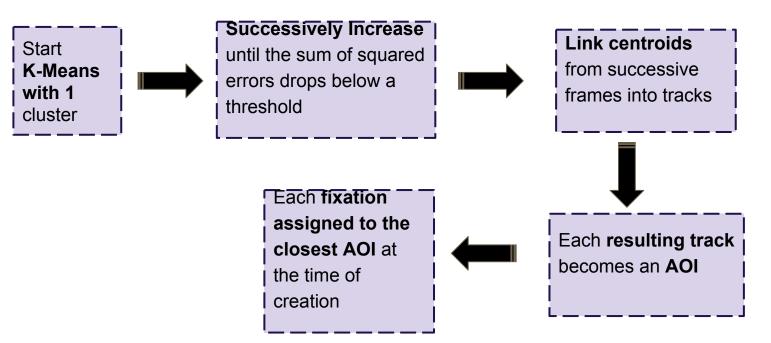
dataset	task A	task B	p-value	significant (p < 0.05) no	
Hollywood-2	action recognition	free viewing	0.14		
Hollywood-2	action recognition	context recognition	0.01	yes	
UCF Sports	action recognition	free viewing	0.75	no	
UCF Sports	action recognition	context recognition	0.04	yes	

Dynamic Consistency Among Subjects


- Spatial distribution highly consistent
- Significant consistency in the order also??
- Automatic Discovery of AOIs & 2 metrics
 - AOI Markov dynamics
 - Temporal AOI alignment

Scanpath representation

• Human fixations - tightly clustered


• Assigning to closest AOI

• Trace the scan path

Automatically Finding AOIs

• Clustering the fixations of all subjects in a frame

Automatically Finding AOIs

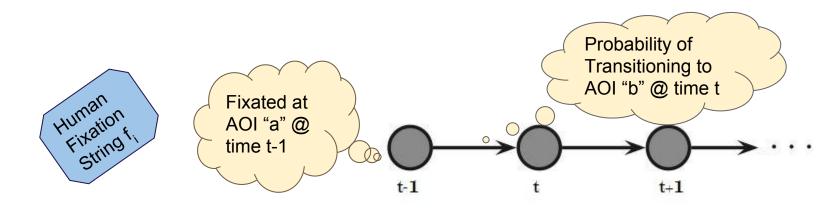
.

frame 10

frame 30

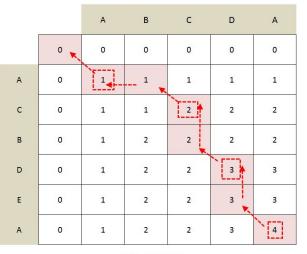
frame 90

frame 145

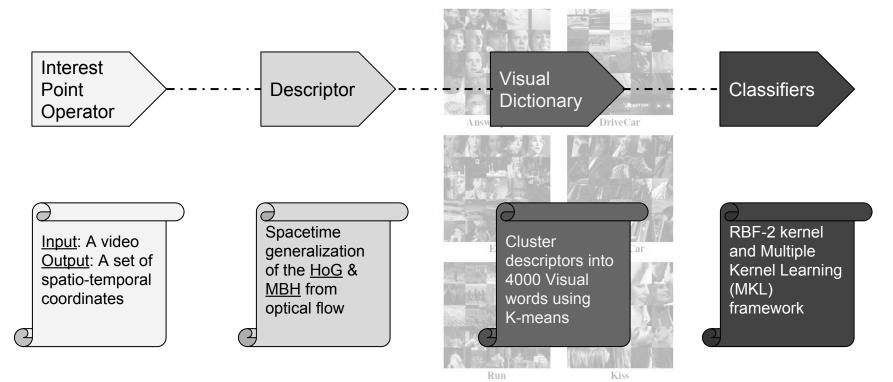

frame 215

frame 230

AOI Markov Dynamics


• Transitions of human visual attention between AOIs by..

Temporal AOI Alignment


• Longest Common Subsequence??

• Able to handle gaps and missing elements

LCS - "ACDA"

Evaluation Pipeline

Human Fixation Studies

Human vs. Computer Vision Operators

- Fixations as interest point detector
- Findings
 - Low correlation
 - Why??

action	percent of human fixated spacetime Harris corners (a)		
AnswerPhone	6.2%		
DriveCar	5.8%		
Eat	6.4%		
FightPerson	4.6%		
GetOutCar	6.1%		
HandShake	6.3% 4.6%		
HugPerson			
Kiss	4.8%		
Run	6.0%		
SitDown	6.2%		
SitUp	6.3%		
StandUp	6.0%		
Mean	5.8%		

Impact of Human Saliency Maps for Computer Visual Action Recognition

Saliency maps encoding only the weak surface structure of fixations (no time ordering), can be used to boost the accuracy of contemporary methods

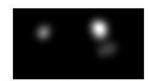
Saliency Map Prediction

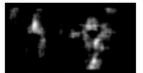
Static Features

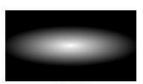
Motion Features

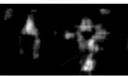
AUC & Spatial KL Divergence

baseline	our motion features (MF)				
feature	AUC (a)	KL (b)	feature	AUC (a)	KL (b)
uniform baseline	0.500	18.63	flow magnitude	0.626	18.57
central bias (CB)	0.840	15.93	pb edges with flow	0.582	17.74
human	0.936	10.12	flow bimodality	0.637	17.63
static features (SF)			Harris cornerness	0.619	17.21
color features [5]	0.644	17.90	HOG-MBH detector	0.743	14.95
subbands [64]	0.634	17.75	feature combinations		
Itti&Koch channels [18]	0.598	16.98	SF [5]	0.789	16.16
saliency map [56]	0.702	17.17	SF + CB [5]	0.861	15.96
horizon detector [56]	0.741	15.45	MF	0.762	15.62
face detector [58]	0.579	16.43	MF + CB	0.830	15.97
car detector [59]	0.500	18.40	SE + ME	0.812	15,04
person detector [59]	0.566	17.13	SF + MF + CB	0.871	15.89


Automatic Visual Action Recognition


(a) original image


(g) Harris cornerness


(b) ground truth saliency

(h) HoG-MBH detector

(c) CB

(i) MF

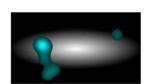

(d) flow magnitude

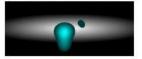
(j) SF

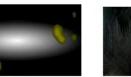
(e) pb edges with flow

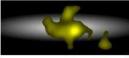
(k) SF + MF

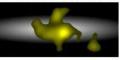
(f) flow bimodality


(1) SF + MF + CB

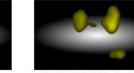

image


image

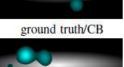

ground truth/CB

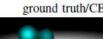

ground truth/CB

HoG-MBH detector/CB


HoG-MBH detector/CB

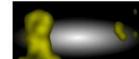
image


image



HoG-MBH detector/CB

HoG-MBH detector/CB



ground truth/CB

Conclusions

- Combining Human + Computer Vision
- Extending Dataset
- Evaluating Static & Dynamic Consistency
- Human Fixations -> Saliency Maps
- End-to-End Action Recognition System

