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Computer Vision v.s. Computer Graphics
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Motivation
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Functionality of 3D Scenes
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Action Map: represent the functionality of 3D Scene
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Data collection & Processing
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7 Actions In 14 Scenes

Action Scenes  Minutes
Sit on furniture 14 54

Use a desktop computer 5 15

Read a book 10 13

Use a laptop computer 7 9

Stand on the floor 12 7

Write on a whiteboard 4 7
Watch television 4 6

Total Scenes: 14

Total Recordings: 45

Table 1: Summary of the dataset. For each action, we show the
" number of scenes in the database with at least once instance of
that action and the total time spent observing this action across all
recording sessions.

“reading a book”




How to characterize the action?

.Hji = p Segments activated by the jth joint of
2 pose p




Featurization: Segment Dictionary Activation
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K centroids: Region Codebook

One of the centroid:
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Codebook encoding
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How to characterize the action?
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Action map prediction
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Action map prediction results:

“using a desktop PC” “standing on the floor”

“using a laptop”

“sitting on furniture®

Test Scene




Ground truth Labeling




Extension: Scene retrieval through action descriptor

Scene descriptor
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Functional similarity based retrieval:

Query Scene Functionally Similar Results




Some weakness

Strength Weakness
e Learn action prediction directly from e Cannot distinguish geometrical similar
real-world observation. objects.
e Doesn’t require annotated object. e Cannot deal with obstructions
e Doesn’t rely on color information. User e Ambiguity and restrictive to a small set of
only 3D geometry. action.

e Data collection is expensive
e Action usually associates with objects,
den



“sitting on furniture”




Possible extension

e Object-based action map
e Functional scene synthesis



Video



Thanks!



