Curiosity-driven Exploration
by Self-supervised Prediction

Author: Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, Trevor Darrell

ICML 2017

PRESENTER: CHIA-CHEN HSU

_______________________________

) B

lllllllllllllllllllllllllll



Reinforcement Learning

Agent

State s, Reward r,

Action a,
Next state s, ,

Environment

Credit: http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturel4.pdf
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Example -- Games

Objective: Complete the game with the highest score

Convolutional Agent

input possible
image actions

State: Raw pixel inputs of the game state -

Action: Game controls e.g. Left, Right, Up, Down
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Reward: Score increase/decrease at each time step

Credit: http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecturel4.pdf




Reward--Motivation

“Forces” that energize an organism to act and that direct its activity.

Extrinsic Motivation: being moved to do something because of some
external reward (SS, a prize, etc.).

Intrinsic Motivation: being moved to do something because it is
inherently enjoyable.

o Curiosity, Exploration, Manipulation, Play, Learning itself . ..

> Encourage the agent to explore “novel” states

> Encourage the agent to perform actions that reduce the error/uncertainty in
the agent’s ability to predict the consequence of its own actions



Challenge of Intrinsic Motivated

Imagine: movement of tree leaves in a breeze
> Pixel prediction would be high

Observation
° (1) things that can be controlled by the agent;
> (2) things that the agent cannot control but that can

affect the agent (e.g. a vehicle driven by another
agent),

> (3) things out of the agent’s control and not affecting
the agent (e.g. moving leaves).

Goal : predict what change of states are caused by
agent or will affect the agent



Self-supervised prediction
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Architecture

*A3C
* Proposed by Google DeepMind. State-of-the-art RL architecture
* 4 convolution + LSTM with 256 units + 2 fully connected

* Two separate fully connected layers are used to predict
° The value function

o The action from the LSTM feature representation

*Intrinsic Curiosity Module (ICM) Architecture Forward
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Experiment

Environment 46838 .00 MOB° RS

1. Super Mario Bros

2. VisDoom

Setting
1. Sparse extrinsic reward on reaching a goal L
|
2. Exploration without extrinsic reward |
1
® . Room:13 |
_] | (“sparse”)
| — [
Room: 17
(“very sparse”)
(a) Train Map Scenario (b) Test Map Scenario



Sparse extrinsic reward
on reaching a goal
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(c) “very sparse reward” setting
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Exploration

VisDoom

Mario

30% of level 1



Demo

Our approach

1%
MakeAGIF.com

ICML 2017 ICLR2017[2]
NIPS2016L1] (This paper) Winner, Visual Doom Al Competition2016
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Self-supervised prediction--Reward

Two subsystems

* A reward generator that outputs a curiosity-driven intrinsic reward signal
* Rewardsr,=ri . +re,

* A policy that outputs a sequence of actions to maximize that reward signal. In
addition to intrinsic

max Er(s,;6,) [ Xe7e]
.



Intrinsic Curiosity Module (ICM)
Architecture

The inverse model

o first maps the input state (st) into a feature vector ¢(st) using a series of four convolution layers, each
with 32 filters, kernel size 3x3, stride of 2 and padding of 1. ELU non-linearity

o The dimensionality of ¢(st) is 288.

° For the inverse model, ¢(st) and ¢(st+1) are concatenated into a single feature vector and passed as
inputs into a fully connected layer of 256

> Fully connected layer with 4 units to predict one of the four possible actions.

The forward model

o Concatenating ¢(st) with at and passing it into a sequence of two fully connected layers with 256 and
288 units respectively.



Self-supervised prediction

Forward
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Intrinsic Reward in RL

1. Explore “Novel” state

2. Reduce error/uncertainty




Fine tuned with curiosity vs external

Al p— finetuned: ICM + A3C
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http://realai.org/intrinsic-motivation/

http://swarma.blog.caixin.com/archives/164137

https://data-
sci.info/2017/05/16/%E4%B8%8D%E9%9C%80%E8%A6%81%ES5%A4%96%E9%83%A8reward%E7
%9IA%SANES%A2%IEXNES%BC%B7%ES%BC%IF%ES%ADY%BS%E7%BF%92-curiosity-driven-
exploration-self-supervised-prediction/

https://weiwenku.net/d/100573787 **




