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Problem

e Learning visual representations of objects
e By actively interacting with the objects

Image source: https://
youtu.be/oSqHcONLkm8?t=49



Why do we care?

* Robotics: robot needs to recognize objects
 Vision: classification

Image source: https://
youtu.be/oSqHcONLkm8?t=47



Related Work

* Unsupervised Learning
— Other approaches use passive data
— Here the robot actively plays with the objects

e Robotic Tasks

— In robotics, we use vision to plan the best grasp
— Here we use grasp data to classify the object



Approach

 Use robot’s experiment results to label objects

 Train Network to predict experiment results given
the picture of the object as input

Experiments:

Grasping

Pushing

Poking

View at different angles

Image source: www.roboticsbusinessreview.com



Grasp

Successful grasps Unsuccesstul grasps
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Grasp

Successful grasps Unsuccessful grasps
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Push

Objects and push action pairs
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Initial state
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Final state
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Push

Objects and push action pairs

.\ . ‘ . .{ij N4 \‘V
oon = = é
&7 Y *“? q. A S
4!5'.,: ﬁ

Initial state Final state Initial state Final state Initial state Final state

pu_convl
48X3X3

o m Qad

il
%
i\

Preprocessed
image 1

Preprocessed
image 2

Image source: paper



Poke

Objects and poke tactile response pairs

Image source: paper
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Complete Network
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Complete Network

Grasp Net
[ ] Poke Net
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Complete Network
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Complete Network
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Experiments — Root Network

Which images generate similar activation
patterns in the Root network?



Experiments — Root Network

Network learns high level features of objects, such as shape.

Image source

: paper



Experiments — Image Retrieval

Instance level

Category level

k=1 k=5 k=10 k=20| k=1 k=5 k=10 k=20
Random Network 0.062 0.219 0.331 0.475 | 0.150 0.466 0.652 0.800
Our Network 0.720 0.831 0.875 0.909 | 0.833 0.918 0.946 0.966
AlexNet 0.686 0.857 0.903 0.941 | 0.854 0.953 0.969 0.982

Recall@k : this approach leads to good retrieval levels

Image source: paper



Nearest Neighbors relies mostly on shape

Image source: paper



Discussion

e Strengths
— Robot learns all by itself
— Able to learn meaningful features (shape)
— Very good retrieval results

 Weaknesses
— Physical interaction is expensive
— Network is heavily handcrafted
— Limited to objects physically available in training



Extensions

* Allow for passive data to enrich dataset

* Actively choose which training data to gather

* Would this work with simpler network?



