

Kristen Grauman UT-Austin Wed Sept 20, 2017

Announcements

- Assignment 1 due Sept 22 11:59 pm on Canvas
- Hw2 is out and due Wed Oct 11
- Next week: CNN hands-on tutorial with Ruohan Gao and Tushar Nagarajan
 - Bring laptop
 - Set up your TACC portal account in advance

Outline

Last time

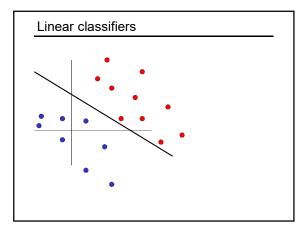
- Spatial verification for instance recognition
- Recognizing categories
- Today
 - Wrap up on categories/classifiers
 - Self-supervised learning
 - External papers & assigned paper discussion
 - Shuffle and Learn (Yu-Chuan)
 - Colorization (Keivaun)
 - Curious Robot (Ginevra)Experiment
 - Network dissection (Thomas and Wonjoon)

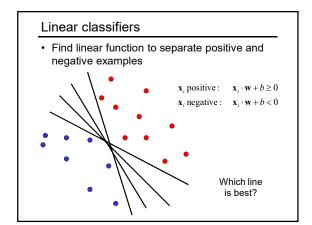
Last time: Three landmark case
studies for image classificationImage: Displaying three
Boosting + face
detectionImage: Displaying three
NN + scene Gist
classificationImage: Displaying three
SVM + person
detectionViola & Jonese.g., Hays & Efrose.g., Dalal & Triggs

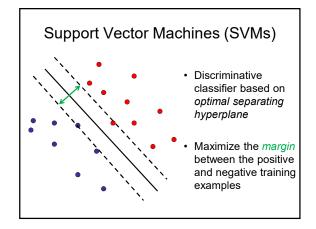
Slide credit: Kristen Gr

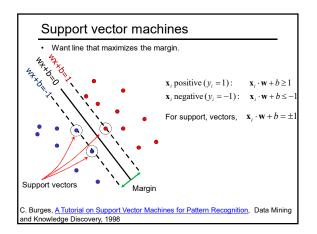
Last time Intro to categorization problem Object categorization as discriminative classification Boosting + fast face detection example Nearest neighbors + scene recognition example Support vector machines + pedestrian detection example Pyramid match kernels, spatial pyramid match

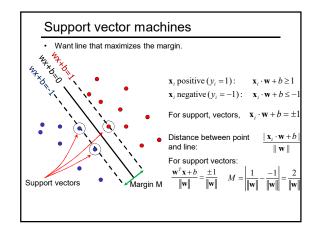
Convolutional neural networks + ImageNet example

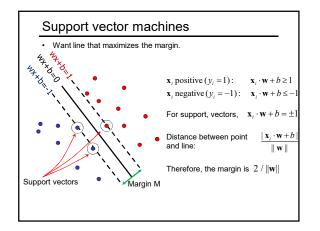


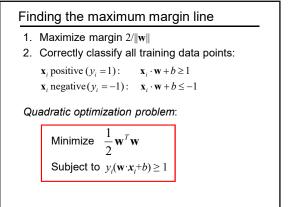


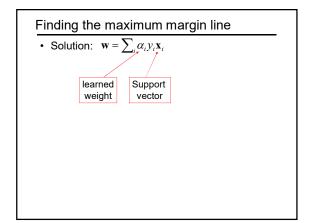


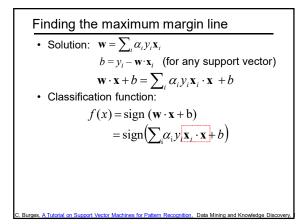


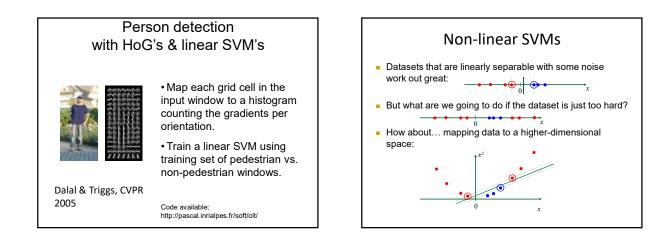












Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

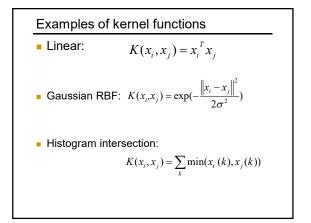
$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

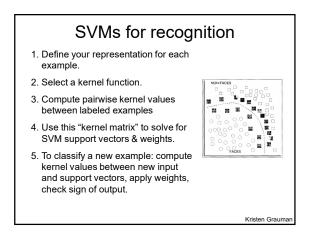
• This gives a nonlinear decision boundary in the original feature space:

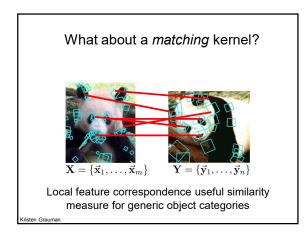
$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

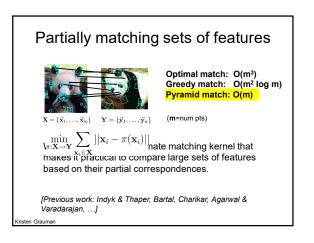
Example

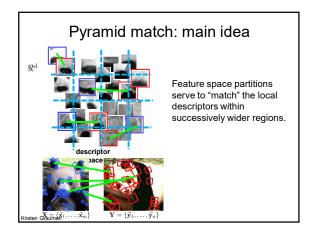
2-dimensional vectors
$$\mathbf{x} = [x_1 \ x_2]$$
;
let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$:
 $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$,
 $= 1 + x_{i1}^2 x_{j1}^2 + 2 \ x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2}$
 $= [1 \ x_{i1}^2 \ \sqrt{2} \ x_{i1} x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]^T$
 $[1 \ x_{j1}^2 \ \sqrt{2} \ x_{j1} x_{j2} \ x_{j2}^2 \ \sqrt{2} x_{j1} \ \sqrt{2} x_{j2}]$
 $= \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$,
where $\varphi(\mathbf{x}) = [1 \ x_{i1}^2 \ \sqrt{2} \ x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]$

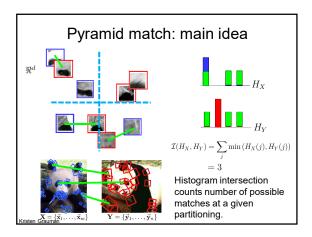


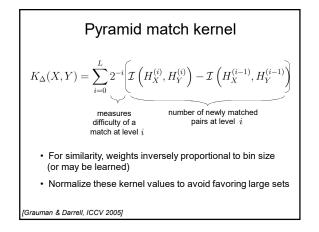


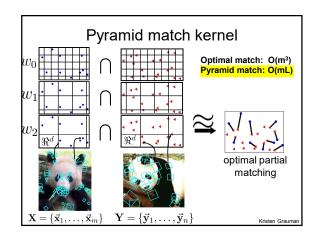


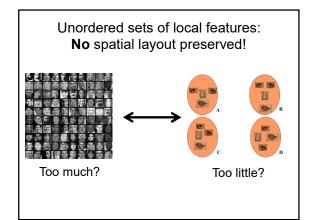


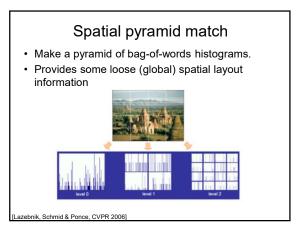


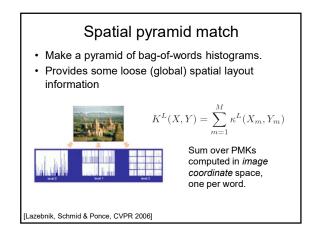


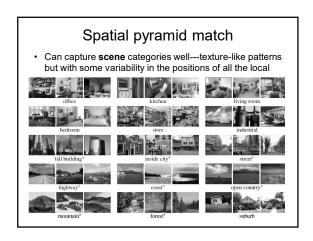


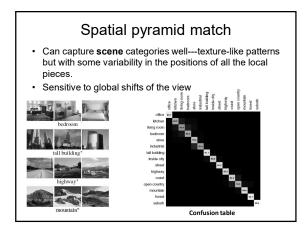












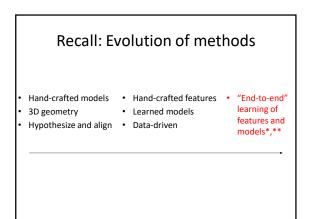
SVMs: Pros and cons

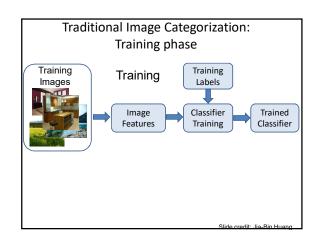
Pros

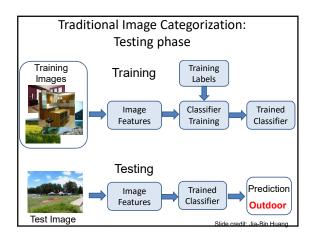
- Kernel-based framework is very powerful, flexible
- Often a sparse set of support vectors compact at test time
- Work very well in practice, even with very small training sample sizes

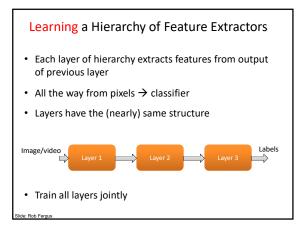
Cons

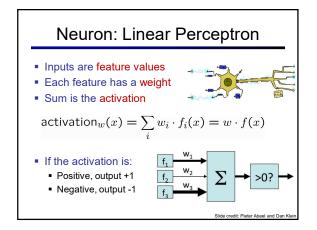
- · No "direct" multi-class SVM, must combine two-class SVMs
- Can be tricky to select best kernel function for a problem
- · Computation, memory
 - During training time, must compute matrix of kernel values for
 - every pair of examples
 - Learning can take a very long time for large-scale problems

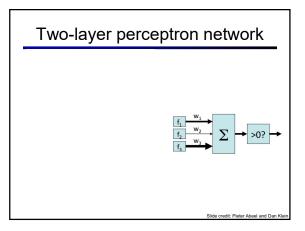


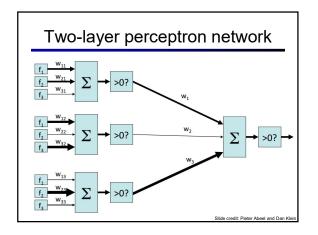


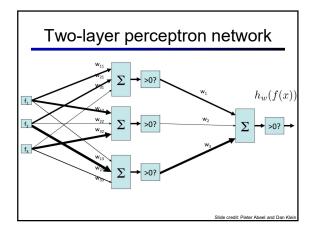


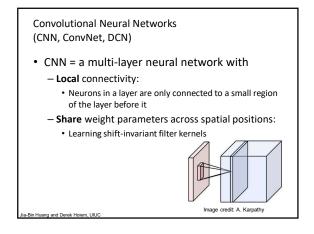


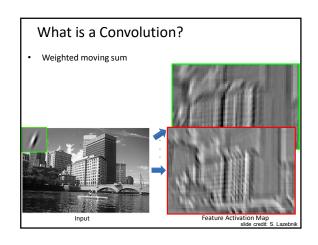


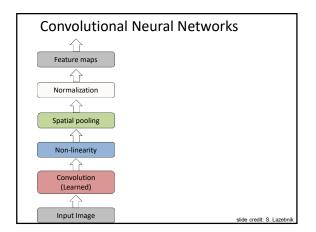


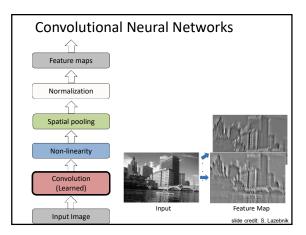


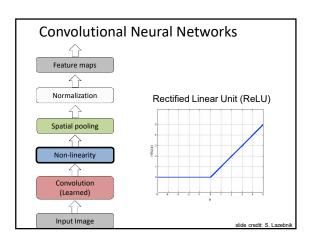


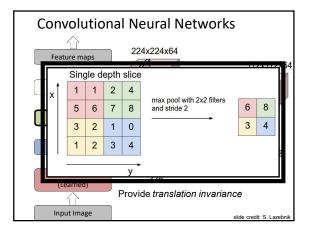


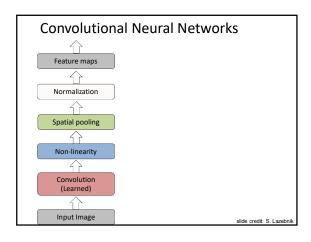


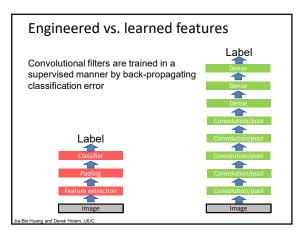


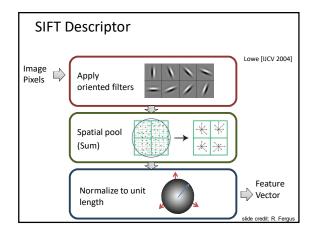


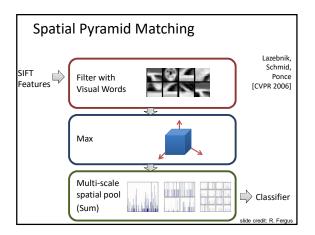


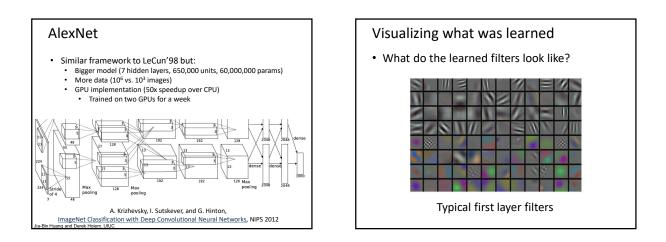


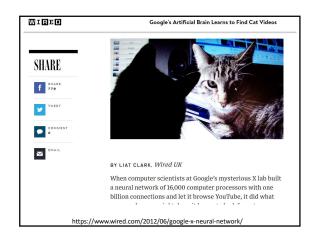


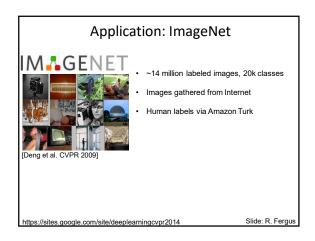


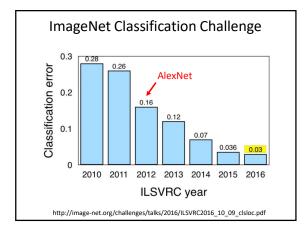


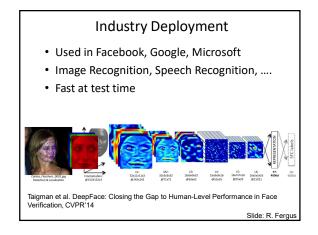












Beyond classification

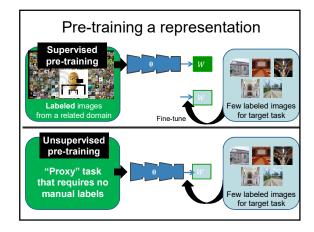
- Detection
- Segmentation
- Regression
- Pose estimation
- Matching patches
- Synthesis

and many more ...

Recap

- Neural networks / multi-layer perceptrons

 View of neural networks as learning hierarchy of features
- Convolutional neural networks
 - Architecture of network accounts for image structure
 - "End-to-end" recognition from pixels
 - Together with big (labeled) data and lots of computation → major success on benchmarks, image classification and beyond



- Colorization
 - Larsson et al. 2016, Zheng et al. 2016
 Temporal order of frames
- Misra et al. 2016

Evaluation of self-supervised rep

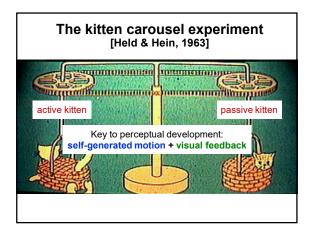
How to test quality of unsupervised pre-training?

Comparisons against

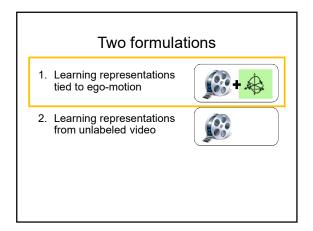
- Equally supervised, but without unsup pretrain
- Fully supervised pre-training (ImageNet)
- · Same network with random weights
- Counting "object-selective units" (Owens et al.)

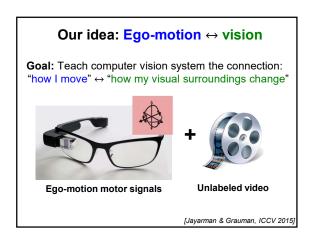
Raw representation, +/- fine-tuning to a task

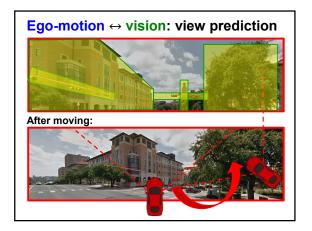
(Ego)motion for self-supervision Dinesh Jayaraman and Kristen Grauman Department of Computer Science University of Texas at Austin

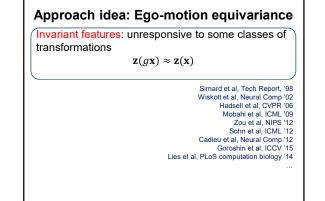


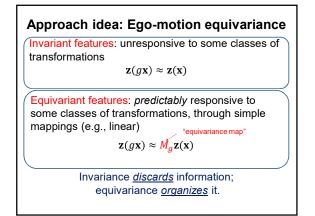


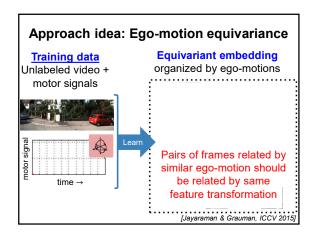


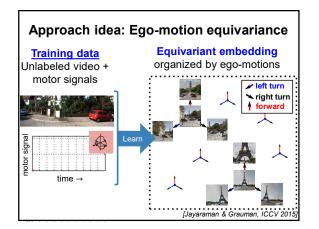


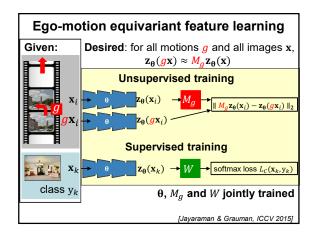


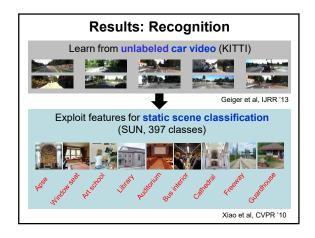


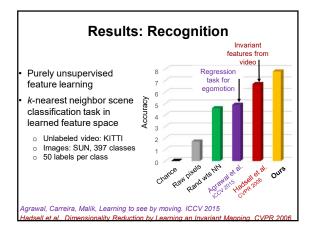


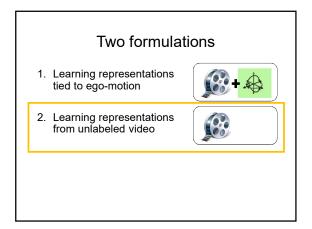


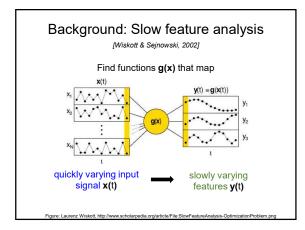


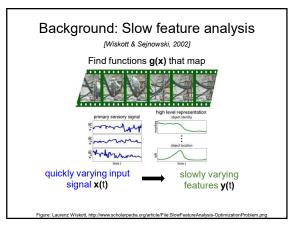


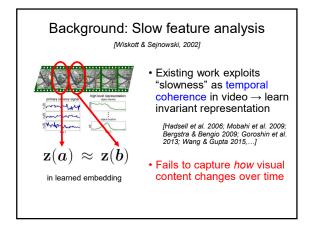


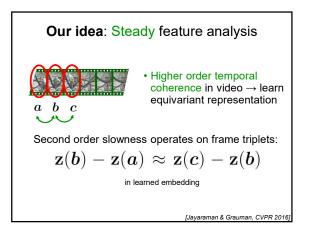


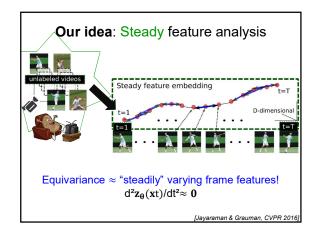


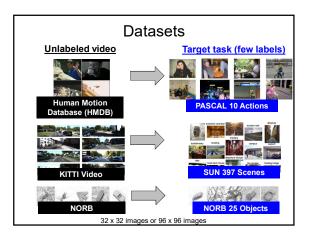




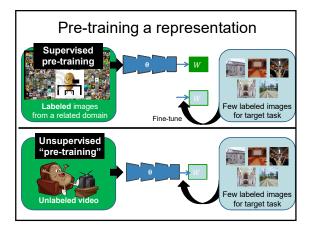


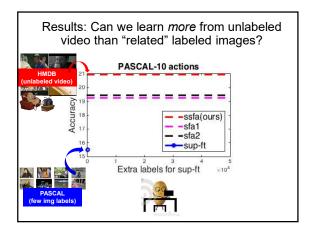


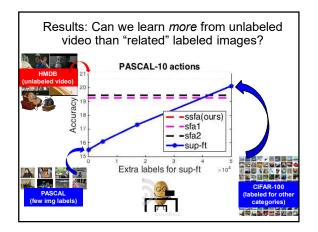


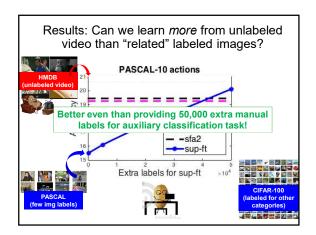


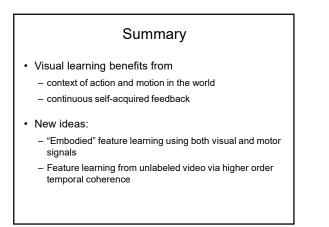
Results: Steady feature analysis				
	-	0.	nechoic chamber	
Task type \rightarrow	Objects	Scenes		Actions
Datasets→	NORB→NORB	KITTI→SUN		HMDB→PASCAL-10
Methods↓	[25 cls]	[397 cls]	[397 cls, top-10]	[10 cls]
random	4.00	0.25	2.52	10.00
UNREG	$24.64{\pm}0.85$	$0.70 {\pm} 0.12$	$6.10 {\pm} 0.67$	15.34 ± 0.28
SFA-1 [30]*	$37.57 {\pm} 0.85$	1.21±0.14	8.24 ± 0.25	$19.26 {\pm} 0.45$
SFA-2 [14]**	$39.23 {\pm} 0.94$	$1.02{\pm}0.12$	6.78 ± 0.32	19.04 ± 0.24
SSFA (ours)	$42.83 {\pm} 0.33$	$1.65{\pm}0.04$	$9.19{\pm}0.10$	$20.95 {\pm} 0.13$
Multi-class recognition accuracy				
*Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR'06 **Mobahi et al., Deep Learning from Temporal Coherence in Video, ICML'09				











Papers

- Learning Image Representations Tied to Ego-Motion. D. Jayaraman and K. Grauman. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, Dec 2015.
- Slow and Steady Feature Analysis: Higher Order Temporal Coherence in Video. D. Jayaraman and K. Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, June 2016.