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Problem Statement
How can we build a system that can classify, locate, and orientoccluded 3D objects using 2D image inputs?
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Related Work
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How can we build a system that can classify, locate, and orientoccluded 3D objects using 2D image inputs?

Method Locate in 3D Orient in 3D Occlusion 2D Input
2D Detection
3D Pose Estimation
Point-Cloud Based Methods
This Paper: 3D Voxel Patterns

Adam Allevato | 2016-06-04 | CS381V | UT Austin



Related Work: 2D Detection
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Method Locate Orient Occlusion 2D Input
2D Detection (DPM)
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Felzenswalb et al. 2010
Deformable Part Models

Viola and Jones 2004
Face Detector



Related Work: 3D Pose Estimation
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Method Locate Orient Occlusion 2D Input
3D Pose Estimation
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Pepik et al. 2012
3D2PM

Savarese and Fei-Fei 2007
3D Category Classification



Related Work: Point-Cloud Based Methods

7

Method Locate Orient Occlusion 2D Input
Point-Cloud Based Methods
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Aldoma 2011
Clustered Viewpoint Feature Histogram

Hodaň et al. 2015
Hashed 3D Voting



Data-Driven 3D Voxel Patterns
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Approach: Data Representation
• 3D Voxel Patterns (3DVPs)

• Capture “patterns of visibility”
• Composed of four parts:

• 2D object image
• 2D segmentation mask
• 3D voxel model
• Metadata: pose, 3D model

• Voxels and pixels can be
• Visible (green)
• Occluded (red)
• Truncated (cyan)
• Self-occluded (blue)
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Approach: Training
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1. Align 2D Images with 3D CAD Models

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012 11

Technically, this is aligning 3D images with 3D CAD models: KITTI includes 3D bounding boxes.Occlusion and illumination changes in the source data are OK because of this.

The CAD models are handpicked from the Trimble 3D Warehouse (3dwarehouse.sketchup.com)



2. Building Voxel Exemplars: Baby 3DVPs
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2. Building Voxel Exemplars: Baby 3DVPs
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+ metadata

57,224 voxel exemplars found in KITTIMetadata includes 3D CAD model (classification) and 3D pose



3. Discovering 3D Voxel Patterns
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• First, generate mirror-image voxel patterns to increase training set
• Similarity metric for clustering:

• Flexibility provided by , but authors use ଵ
ସ, ଵସ, ଵସ, ଵସ .

• Gives a “flat” similarity: evaluates agreement between voxel labels
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3. Discovering 3D Voxel Patterns
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3DVPs are “clustered exemplars” and have the same data structure



4. Training 3D Voxel Pattern Detectors
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4. Training 3D Voxel Pattern Detectors
• Train a detector for each 3DVP using Aggregated Channel Features (ACF): Blur the image, then split into channels and downsample 4x

• Channels in Ω: gradients, HoG features, and LUV channels.
• Use boosting on pixels selected from all channels at once to build discriminative trees
• Realtime algorithm developed in 2014, over 200 citations

17P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014



Approach: Testing
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1. Apply 3DVP Detectors

Slide Credit: Yu Xiang 19

Testing images are 2D only



2. Collect and Apply Metadata
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2. Collect and Apply Metadata
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3. Occlusion Reasoning
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3. Occlusion Reasoning
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What we want:
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Greedy approach to maximize E –better methods may be possible



3. Occlusion Reasoning
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3. Occlusion Reasoning
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4. 3D Localization
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At this point we also assign a single CAD model to each detection based on the closest match from clustering.



Results

Adam Allevato | 2016-06-04 | CS381V | UT Austin 27



28Slide Credit: Yu Xiang



29Slide Credit: Yu Xiang

This approach can generalize.



Car Detection and Orientation on KITTI
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Analysis
• State-of-the-art results
• Explicitly models occlusion
• Data driven approach
• Can perform segmentation

• Complicated training pipeline
• Requires CAD models of objects
• Requires 3D data for training
• Little to no work on classification (sedans vs. vans)
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The Good The Bad

Uses handcrafted features
How long does it take?

?



Discussion
• Will we ever not need 3D data for training?
• Does this work with deformable objects?

• Does it need to?
• Possible extension: extend to more diverse classes

• 227 different detectors just for “car”
• What if we want to detect 20 different objects?
• What kind of grouping would need to be done?
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