Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer

Christoph H. Lampert, Hannes Nickisch and Stefan Harmeling

Presented by Ruohan Gao UTCS CS381V Visual Recognition 2016 Spring

Image Annotation

Koala

Apple

30,000+ human recognizable object categories

Labeled Datasets

..........

Training

Training

Tiger

Koala

What about unseen labels?

Problem Formulation

$$\mathcal{X}:$$
 arbitrary feature space

$${\mathcal Y}$$
 : label set ${\mathcal Y}~=~\{y_1,\ldots,y_K\}$

Training Samples: $(x_1, l_1), \ldots, (x_n, l_n) \subset \mathcal{X} \times \mathcal{Y}$

Task: learn a classifier: $f : \mathcal{X} \to \mathcal{Z}$ for a label set $\mathcal{Z} = \{z_1, \ldots, z_L\}$ that is disjoint from \mathcal{Y}

Solving the Problem

Solving the Problem

Reflection: Flat multi-class classification cannot generalize to classes $(z_l)_{l=1...,L}$ that are not part of the training set

We need to introduce a coupling between classes in ${\mathcal Y}$ and ${\mathcal Z}$

Inserted by human efforts

Constraints on Coupling Mechanisms:

- 1. The amount of human effort to specify new classes should be minimal.
- 2. Coupling data that requires only common knowledge is preferable over specialized knowledge.

What's this animal?

Furry: Black: White: Water: Eats Bamboo:

Semantic Attributes

- Shape
- Color
- Life Habits
- Organs
- Geographic Information

•

Semantic Attributes

Meaningful high-level concepts transcend class boundaries

White

Sea

Constraints on Coupling Mechanisms:

1. The amount of human effort to specify new classes should be minimal.

Attributes are assigned on a per-class basis instead of a per-image basis

2. Coupling data that requires only common knowledge is preferable over specialized knowledge.

Humans are typically able to provide good prior knowledge about such attributes

Attribute-Based Classification

Direct Attribute Prediction (DAP)

Indirect Attribute Prediction (IAP)

Direct attribute prediction (DAP)

training labels $(y_k)_{k=1,...,K}$ imply training values for the attributes $(a_m)_{m=1,...,M}$, from which parameters β_m are learned.

At test time, attribute values can directly be inferred, and these imply output class label even for previously unseen classes.

Indirect attribute prediction (IAP)

Multi-class parameters α_K are learned for each training class. At test time, the predictions for all training classes induce a labeling of the attribute layer, from which a labeling over the test classes can be inferred.

Implementation - DAP

- The trained classifiers provide: $p(a_m|x)$
- Complete Image-Attribute Layer: $p(a|x) = \prod_{m=1}^{M} p(a_m|x)$

 z_2

 β_2

- Deterministic Assumption: $p(a|z) = \llbracket a = a^z \rrbracket$
- Bayes' Rule: $p(z|a) = \frac{p(z)}{p(a^z)} [\![a = a^z]\!]$
- Posterior of a test class:

$$p(z|x) = \sum_{a \in \{0,1\}^M} p(z|a)p(a|x) = \frac{p(z)}{p(a^z)} \prod_{m=1}^M p(a_m^z|x)$$

Implementation - IAP

- Learn a probabilistic multi-class classifier estimating $p(y_k|x)$
- Deterministic Assumption: $p(a_m|y) = [\![a_m = a_m^y]\!]$
- Combining above two steps:

$$p(a_m|x) = \sum_{k=1}^{K} p(a_m|y_k)p(y_k|x)$$

• Similar to DAP:

$$p(z|x) = \sum_{a \in \{0,1\}^M} p(z|a)p(a|x) = \frac{p(z)}{p(a^z)} \prod_{m=1}^M p(a_m^z|x) \overset{\alpha_1}{\longrightarrow} \overset{\alpha_2}{\longrightarrow} \overset{\alpha_K}{\longrightarrow}$$

 z_1

 a_1

 y_1

 z_2

 a_2

 y_2

• • •

. . .

 z_L

 a_M

 y_K

Prediction Decision: MAP Prediction

$$p(z|x) = \sum_{a \in \{0,1\}^M} p(z|a)p(a|x) = \frac{p(z)}{p(a^z)} \prod_{m=1}^M p(a_m^z|x)$$

- Class priors: assume identity, ignore p(z)
- Attribute priors: assume to be empirical means:

$$p(a_m) = \frac{1}{K} \sum_{k=1}^{K} a_m^{y_k}$$

• Decision rule $f: \mathcal{X} \to \mathcal{Z}$:

$$f(x) = \operatorname*{argmax}_{l=1,...,L} \prod_{m=1}^{M} \frac{p(a_m^{z_l}|x)}{p(a_m^{z_l})}$$

- New dataset: Animals with Attributes
- 30,475 images with at minimum of 92 images for any class
- Animals are uniquely characterized by their attribute vector

otter black: yes white: no brown: yes stripes: no water: yes eats fish: yes

polar bear

black: no white: yes brown: no stripes: no water: yes eats fish: yes

<u>zebra</u>

black: yes white: yes brown: no stripes: yes water: no eats fish: no

Figure 4. Confusion matrices between 10 test classes of the *Animals with Attributes* dataset (best viewed in color). Left: indirect attribute prediction (IAP), right: direct attributes prediction (DAP).

Ordinary multi-class classification accuracy: 65.9%

Quality of the individual attribute predictors on the test set using DAP

Random AUC: 0.5

Figure 5. Detection performance of object classification with disjoint training and test classes (DAP method): ROC-curves and area under curve (AUC) for the 10 *Animals with Attributes* test classes.

Summary

- A framework of learning for disjoint training and test classes
- Two methods for attribute-based classification: DAP and IAP

• A new dataset: Animals with Attributes with attribute annotation

Interesting Discussion Points and Future Extensions

- Why DAP outperforms IAP by so much?
- Some attributes might be easy to learn than the others. What is the best way to learn attributes?
- Develop adaptive system to grow to include new classes
- Remove the amount of human effort
- Develop a system that automatically figures out attributes from images based on a fixed set of human defined attributes?
- Merged with supervised classification with scarce training examples
- Multi-layer attributes? Interrelationship among attributes?
- Attribute specific queries

Reference

- Lampert, Christoph H., Hannes Nickisch, and Stefan Harmeling.
 "Learning to detect unseen object classes by between-class attribute transfer." *Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on*. IEEE, 2009.
- <u>animals with attributes</u>: A dataset for Attribute Based Classification