

Video-based interfaces

Human joystick, NewsBreaker Live

Assistive technology systems Camera Mouse, Boston College

Microsoft Kinect

What else?

Challenges: many nuisance parameters

Illumination

Object pose

Occlusions

Intra-class appearance

Clutter

Viewpoint

Video credit: Rob Fergus and Antonio Torralba

Goals

- Understand current approaches
- Analyze
- Identify interesting research questions

Paper review guidelines

- Brief (2-3 sentences) summary
- · Main contribution
- Strengths? Weaknesses?
- How convincing are the experiments? Suggestions to improve them?
- Extensions? What's inspiring?
- · Additional comments, unclear points
- Relationships observed between the papers we are reading

Paper presentation guidelines

- Read the selected paper
- Well-organized talk, about 15 minutes
- What to cover?
 - Problem overview, motivation
 - Algorithm explanation, technical details
 - Any commonalities, important differences between techniques covered in the papers.
 - Demos, videos, other visuals etc. from authors
- See handout and class webpage for more details.

Miscellaneous

- Feedback welcome and useful!
- Slides, announcements via class website
- Discussion including assignment questions on Piazza
- No laptops, phones, etc. open in class please.

Syllabus tour

- The core
 - Instance recognition
 - Category recognition
 - Mid-level representations
 - Object detection

- Advanced topics
 - Great outdoors
 - Social signals
 - Noticing and remembering
 - Low-supervision learning
 - 3d scenes and objects
 - Recognition in action
 - Attributes and parts
 - Language and vision

Instance recognition

Local invariant features, detection and description

Matching models to images

Indexing specific objects with bag-of-words descriptors

Category recognition

Recognition as an image classification problem

Discriminative methods

Image descriptors

Convolutional neural networks

Large-scale image collections

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Coming up

- Do reading and paper reviews/discussion point posts for weeks 1 and 2
 - Instance recognition
 - Category recognition
- No class next week