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The "Kitten Carousel” Experiment
(Held & Hein, 1963)

The Kitten Carousel
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Key to perceptual development
self-generated motion + visual feedback
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Problem

* Today’s visual recognition algorithms learn from
“disembodied” bag of labeled snapshots.




Objective

* Provide visual recognition algorithm that learns
in the context of acting and moving in the world.




Main ldea

* Associate Ego-Motion and vision by teaching computer
vision system the connection:
* “how | move” & “how my visual surroundings change”
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Ego-motion < vision for recognition

* Learning this connection requires:
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» Depth, 3D geometry
> Semantics Also key to

» Context = recognition!

e Can be learned without manuallabels!

Approach: unsupervised feature learning using
egocentric video + motor signals
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Approach
Ego-motion equivariance

“Invariant features: unresponsive to some classes of )
transformations

z(gx) = z(x)
N\ J
/Equiva riant features : predictably responsive to some \

classes of transformations, through simple mappings
(e.g., linear)

“‘equivariance map”
z(gx) =~ M,z(x)

o /

Invariance discards information;
equivariance organizes it.




Approach

Training data Equivariant embedding
Unlabeled video + organized by ego-motions

motor signals

@ Pairs of frames related by
5 } similar ego-motion should
O i

time — be related by same feature

transformation
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Approach

1. Extract training frame pairs from video
2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel



Training frame pair mining

Discovery of ego-motion clusters

A =left turn
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Ego-motion equivariant feature learning

Given:
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Desired: for all motions g and all images X,
Zo(gX) = M,Zg(X)
Unsupervised training
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Experiments

* Validation using 3 public datasets: NORB, KITTI, SUN.

 Comparison with different methods: CLSNET,
TEMPORAL, DRLIM.
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Results: Recognition

Learn from unlabeled car video (KITTI)

‘ Geiger et al, JRR’13

Exploit features for static scene classification
(SUN, 397 classes)
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Results: Recognition

Do ego-motion equivariant features improve recognition?

6 labeled training examples
per class
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Up to 30% accuracy increase
over state of the art!

*Hadsell et al., Dimensionality Reduction by Learning an Invariant Maj
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Results: Active recognition

e Leverage proposed equivariant embedding to
select next best view for object recognition

NORB data
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Conclusion and Future Work

 The paper provided a new embodied visual feature
learning paradigm.

 The Ego-motion equivariance boosts performance
across multiple challenging recognition tasks.



Questions

 Why KITTI training and not some other domain based
training?

 Why does incorporating DRLIM improve EQUIV? Still
Temporal coherence properties left to be learned?

* Is it meaningful to compare EQUIV or EQUIV + DRLIM
with the other cases with respect to equivariance

error?







