Learning video saliency from human gaze using candidate selection

Rudoy, Goldman, Schechtman, Manor

Akanksha Saran CS381V: Experiment Presentation

Outline

- Description of Gaze Datasets
 -DIEM
 -CRCNS
- Analysis of Human Gaze Datasets for Videos

 Variation in human agreement on fixations
 Gaze Patterns over time
 Ground Truth overlap with Candidate Regions
 Correlation between pupil dilation and fixations
- Conclusions

Outline

• Description of Gaze Datasets

-DIEM (Dynamic Images and Eye Movements) -CRCNS (Collaborative Research in Computational Neuroscience)

- Analysis of Human Gaze Datasets for Videos

 Variation in human agreement on fixations
 Gaze Patterns over time
 Ground Truth overlap with Candidate Regions
 Correlation between pupil dilation and fixations
- Conclusions

DIEM Dataset

- 84 videos captured at 30 fps
- ~50 participants/video
- More than 4500 eye movement traces
- Some videos used with audio data
- Videos on TV news, sports, commercials, movie trailers, wildlife etc.
- Provide gaze information for left and right eye separately for each participant
- X,Y coordinates on the screen, saccade/fixation/blink, pupil dilation
- Eye tracker rate is 1000 Hz

DIEM Dataset Illustration

https://www.youtube.com/watch?v=Q3FgO2_ZuP0

https://www.youtube.com/watch?v=D5K09NPn75c

CRCNS Dataset

- 50 video clips (Itti, 2004; 2005).
- 8 subjects total; 4-6 subjects on each video clip.
- 235 eye movement traces.
- Videos on TV news, sports, commercials, talk shows, Video games (short video snippets combined together)
- (X,Y) at each time point plus additional information when saccades start
- Eye tracker rate is 240 Hz.
- Task: "follow main actors and actions, try to understand overall what happens in each clip. We will ask you a question about main contents. Do not worry about details like specific text messages."

CRCNS Dataset Illustration

https://www.youtube.com/watch?v=_d1nvM6AI9A

https://www.youtube.com/watch?v=sdq5TV_nKlg

Properties of the two datasets

DIEM	CRCNS
Single event videos	Multiple video snippets combined
4500 gaze patterns	235 gaze patterns
~50 subjects per video	~4 subjects per video
Video frames vary in size (1280 x 960)	Fixed size video frame (640 x 480)
High Quality	Low quality
1000 Hz eye tracker	240 Hz eye tracker
Some videos shown with audio	No audio

Outline

- Description of Gaze Datasets
 -DIEM
 -CRCNS
- Analysis of Human Gaze Datasets for Videos
 - -Variation in human agreement on fixations
 - -Gaze Patterns over time
 - -Ground Truth overlap with Candidate Regions
 - -Correlation between pupil dilation and fixations
- Conclusions

Outline

- Description of Gaze Datasets
 -DIEM
 -CRCNS
- Analysis of Human Gaze Datasets for Videos

 Variation in human agreement on fixations
 Gaze Patterns over time
 Ground Truth overlap with Candidate Regions
 Correlation between pupil dilation and fixations
- Conclusions

Variation in human agreement on fixations (DIEM)

- Per-frame variation in gaze fixations across participants is well bounded for all videos
- Variations for the left and right eye are closely related (as expected)

Variation in human gaze across videos

Variation in human agreement on fixations (DIEM)

- Per-frame variation in gaze fixations across participants is well bounded for all videos
- Variations for the left and right eye are closely related (as expected)

Variation in human gaze across videos

Low variation in human gaze agreement

• close up shots, activity towards center, text

https://www.youtube.com/watch?v=E8PzL6-U1yl

https://www.youtube.com/watch?v=vIEFCc_9y74

High variation in human gaze agreement

• no sound available, not clear what is going on, gives time to examine the room

https://www.youtube.com/watch?v=hzYrz-ixuwc

https://www.youtube.com/watch?v=2j7Gq9tDZ80

Variation in human agreement on fixations (CRCNS)

- Per-frame variation in gaze fixations across participants is well bounded or all videos
- Variations in data is less than DIEM dataset

Variation in human agreement on fixations (CRCNS)

- Per-frame variation in gaze fixations across participants is bound in a small band for all videos
- Variations in data is less than DIEM dataset

Low variation in human fixations (CRCNS)

• Text which limits the variance, motion cues seem to guide subjects

https://www.youtube.com/watch?v=wRKD5InFqs0

https://www.youtube.com/watch?v=mRTKOdQO_Kw

High variation in human fixations (CRCNS)

• less motion allows subjects to focus on different aspects of the scene

https://www.youtube.com/watch?v=5ulk-tJ5YwQ

https://www.youtube.com/watch?v=vnvRrbeEIBU

DIEM v/s CRCNS

- Avg standard deviation across participants and across videos
- Normalized with respect to width and height of corresponding frame
- DIEM a more diverse dataset

DIEM (left eye)	DIEM (right eye)	CRCNS
0.1748	0.1863	0.1294

Outline

- Description of Gaze Datasets
 -DIEM
 -CRCNS
- Analysis of Human Gaze Datasets for Videos

 Variation in human agreement on fixations
 Gaze Patterns over time
 Ground Truth overlap with Candidate Regions
 Correlation between pupil dilation and fixations
- Conclusions

Gaze patterns over time (DIEM)

- Gaze pattern for a subject with **moderate variation** in fixations over time
- Fixations localize in certain regions over the entire frame

720 x 576

Gaze patterns over time

- Gaze pattern for a subject with **largest variation** in fixations over time
- Fixations localize in certain regions over the entire frame

Gaze patterns over time

• Gaze pattern for a subject with **smallest variation** in fixations over time

720 x 576

- Fixations localize in certain regions over the entire frame
- Candidate regions form a valid hypothesis to model video saliency

Outline

- Description of Gaze Datasets
 -DIEM
 -CRCNS
- Analysis of Human Gaze Datasets for Videos
 - -Variation in human agreement on fixations
 - -Gaze Patterns over time
 - -Ground Truth overlap with plausible Candidate Regions
 - -Correlation between pupil dilation and fixations
- Conclusions

Gaze fixation overlap with plausible Regions (Hit Rate for DIEM dataset)

- Overlap with **per-frame face detections** (every 10 frames)
- Overlap with high magnitude **optical flow** regions (every 15 frames)
- Overlap with per-frame static saliency (every 10 frames)

Faces	Optical Flow	Static saliency
30.62 %	49.25 %	37.02 %

Gaze Hits with Faces

• Not detecting the other face helps reasoning about most of the ground truth fixations

Gaze Misses with Faces

• Motion cue dominates

Gaze Misses with Faces

• Text reading over a few frames

Gaze Misses with Faces

• Frontal face detector does not detect the side view

Gaze Hits with Optical Flow

Frame n + 15

- Includes a large region with insignificant motion
- High recall

Frame n

Flow thresholded image

Gaze Hits with Optical Flow

Flow thresholded image

Frame n

- Brightness constancy constraint violated
- Entire object falsely detected as having motion
- High recall

Gaze Hits with Optical Flow

Flow thresholded image

Frame n

- Likely frames from a scene-cut detector
- Almost every pixel in the frame has significant motion

Gaze Misses with Optical Flow

Frame n

Frame n + 15

Flow thresholded image

• Center of the frame accounts for most ground truth fixations

Gaze Misses with Optical Flow

Flow thresholded image

Frame n

Frame n + 15

• Insignificant motion

Gaze Hits with Static Saliency

- Static saliency can extract out text in the center of the image
- The subject could be in the process of reading the text

Gaze Hits with Static Saliency

• Redundant information from face detector and static saliency

Gaze Hits with Static Saliency

• Almost all ground truth fixations accounted for

Gaze Misses with Static Saliency

 None of face detector, optical flow or static saliency accounts for the ground truth fixations here

Gaze Misses with Static Saliency

• Motion cue dominates

Gaze fixation overlap with plausible Regions

- Optical flow can reason for about 50% of the ground truth gaze data
- Frontal face detector fails to detect faces in all scenarios
- Static saliency (GBVS) can reason about text in center of image frames
- Multiple cues can reason about the same ground truth gaze point
- Static cues not sufficient to model all gaze fixations,
- Scope for modeling transitions dynamically between frames
- Scope for other cues to be used

Outline

- Description of Gaze Datasets
 -DIEM
 -CRCNS
- Analysis of Human Gaze Datasets for Videos
 -Variation in human agreement on fixations
 -Gaze Patterns over time
 - -Ground Truth overlap with Candidate Regions
 - -Correlation between pupil dilation and fixations
- Conclusions

Correlation between pupil dilation and event tags

- Each frame is labeled with an event tag by the eye tracking device
- Types of event tags Fixation, Saccade, Blink
- Right eye (0.47), Left eye (0.35)

Correlation between pupil dilation and fixations

- Each frame is labeled with an event tag by the eye tracking device
- Only frames with the 'fixation' event tag considered
- Right Eye (0.48), Left Eye (0.31)

Correlation between pupil dilation and fixations

- Pupil dilation has a weakly positive correlation with gaze fixation
- In general, higher dilation in pupil indicates "interest"
- Pupil dilation not used to model video saliency in the paper by Rudoy et al
- The right eye has a consistently higher correlation with gaze fixation versus the left eye (measurement bias of the tracker?)
- Not very reliable

Outline

- Description of Gaze Datasets
 -DIEM
 -CRCNS
- Analysis of Human Gaze Datasets for Videos

 Variation in human agreement on fixations
 Gaze Patterns over time
 Ground Truth overlap with Candidate Regions
 Correlation between pupil dilation and fixations
- Conclusions

Conclusions

- Gaze fixation across participants have tight bounds of variations
 Candidate regions form a valid hypothesis to model video saliency
- Fixations localize in certain regions over the entire frame
- Static cues not sufficient to model all gaze fixations
 - Scope for modeling transitions dynamically between frames
- Pupil dilation and human gaze fixations are weakly positively correlated
- Written text forms another crucial candidate region

Thank you!