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* 3D ShapeNets can be converted into a CNN,
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X = (Xu,Xo) P(Y,%Xu|Xo) Gibbs sampling with clamping_ .
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[29] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng.

27
Convolutional-recursive deep learning for 3d object classification. In NIPS 2012.
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Deep View Planning
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Deep View Planning
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Based on the algorithms’ choice, we obtain the actual depth map for the
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As a 3D Feature Extractor

Slide Credit: Wu et a



As a 3D Feature Extractor

Mesh Classification & Retrieval

10 classes SPH [1¥] | LED [¥] Ours
classification 79.79 % | 79.87 % | 83.54%
retrieval AUC | 45.97% 51.70% | 69.28%
retrieval MAP | 44.05% 49.82% | 68.26%

40 classes SPH [1%] | LFD [¥] Ours
classification 68.23% 75.47% | 77.32%
retrieval AUC | 34.47% 42.04% | 49.94%
retrieval MAP | 33.26% 4091% | 49.23%

Slide Credit: Wu et al
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As a 3D Feature Extractor

Mesh Classification & Retrieval

10 classes SPH [1¥] | LED [¥] Ours
classification 79.79 % | 79.87 % | 83.54%
retrieval AUC | 45.97% 51.70% | 69.28%
retrieval MAP | 44.05% 49.82% | 68.26%

40 classes SPH [1%] | LFD [¥] Ours
classification 68.23% 75.47% | 77.32%
retrieval AUC 34.47% 42.04% | 49.94%
retrieval MAP | 33.26% 4091% | 49.23%

2.5D object recognition
all
[29] Depth 0.376
NN 0.374
ICP 0.471
3D ShapeNets 0.437
| 3D ShapeNets fine-tuned 0.579 |
"] RGB 0.334
[29] RGBD 0.448

[29] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng.

Convolutional-recursive deep learning for 3d object classification. In NIPS 2012. .
Slide Credit: Wu et al



As a 3D Feature Extractor

1‘0 Classes Results
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Slide Credit: Wu, Song et al. 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling, CVPR 2015
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Extensions



* |Include RGB information in representation
* 3D Segmentation

* Improve tor non-rigid 3D objects

35



Discussion Points

36



* |sthe network deep enough?
e 30x30x30 = 27000 vs 256x256 = 65000 for Image Net

e 150K training examples vs millions for Image Net

37



* Won't removal of max-pooling layers hurt
performance on classification tasks?

ModelNet40 | ModelNet40 | ModelNet10 | ModelNet10
Algorithm Classification | Retrieval | Classification | Retrieval
(Accuracy) (mAP) (Accuracy) (mAP)
MVCNN [3] 90.1% 79.5%
VoxNet [2] 83% 92%
DeepPano [4] 77.63% 76.81% 85.45% 84.18%
3DShapeNets [1] 77% 49.2% 83.5% 68.3%

[1]1Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao. 3D ShapeNets: A Deep Representation for Volumetric Shapes. CVPR2015.
[2] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. IROS2015.

[3] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convolutional Neural Networks for 3D Shape Recognition. ICCV2015.

[4] B Shi, S Bai, Z Zhou, X Bai. DeepPano: Deep Panoramic Representation for 3-D Shape Recognition. Signal Processing Letters 2015.

38 http://3dshapenets.cs.princeton.edu/
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* Any other systems that use binary units with

approximate training and inference techniques
rather than standard back-prop?

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast

learning algorithm for deep belief nets." Neural computation
18.7 (20006): 1527-1554

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton.
'Restricted Boltzmann machines for collaborative filtering.”

Proceedings of the 24th international conference on Machine
learning. ACM, 2007 .
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* Are there better ways for representing 3D Shapes.
In particular, doesn’t the voxel representation have
the bottleneck of cubic dependency on grid size?

* Yes. Su, Majhi et al that tries to recognize 3D shapes
from multiple 2D views instead of voxel representation
and get better results for classification .

H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convolutional Neural Networks for 3D Shape Recognition.

ICCV2015.
40



Are there other 3D CAD model datasets

e 3D Warehouse. https://3dwarehouse.sketchup.com/

Manually removing clutter from 3D CAD models a
problem

Did not address non-rigid objects sufficiently.

e Even the 40 model classification dataset seemed to

contain only 4 non-rigid categories — persons, plant,
sofas, curtains.

41
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Appendix



12
Contrastive divergence learning:

A quick way to learn an RBM

Q @ @ Q /@ @ Start with a training vector on the

VARER\

o0 -~ visible units.
<Viftj=> <Viftj=> Update all the hidden units in
parallel

@ O \QD/Q Update all the visible units in parallel

to get a “reconstruction”.
t=0 t=1

data reconstruction

Update all the hidden units again.

0 1
Aw; = ¢ ( <vl-hj> — <vl-hj> )
This is not following the gradient of the log likelihood. But it works well.

It is approximately following the gradient of another objective function. 43

Slide Credit: Geoffery Hinton



The wake-sleep algorithm for an SBN

« \Wake phase: Use the recognition
weights to perform a bottom-up
pass.

W
— Train the generative weights to l’ X

reconstruct activities in each
layer from the layer above.

. Sleep phase: Use the generative l W
weights to generate samples from 2
the model.

— Train the recognition weights to
reconstruct activities in each R, I 1 /%

layer from the layer below.

data

Slide Credit: Geoffery Hinton



