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Announcements

* Reminder: Assignment 1 due Feb 19 on Canvas
* Reminder: Optional CNN/Caffe tutorial on Monday

Recognizing object categories Feb15,5-7 pm
Kristen Grauman * Presentations:
UT-Austin * Choose paper, coordinate

* Experiment and paper can overlap
* Be very mindful of time limit

Last time: Recognizinginstances Last time: Recognizing instances

« 1. Basics infeature extraction: filtering
¢ 2. Invariant local features
* 3. Recognizing objectinstances

Recognition via feature

matching+spatial verification Today
Pros: * Intro to categorization problem
+ Effective when we are able to find reliable features * Object categorization as discriminative classification
within clutter ) o « Boosting + fast face detection example
- Great results for matching specific instances « Nearest neighbors + scene recognition example
Cons: * Support vector machines +pedestrian detection example

* Pyramid match kernels, spatial pyramid match

« Scaling with number of models !
* Convolutional neural networks + ImageNet example

« Spatial verification as post-processing — not

seamless, expensiv e for large-scale problems * Some new representations along the way
« Not suited for category recognition. * Rectangular filters
* GIST
* HOG

Kristen Grauman
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What does recoghnition involve?

Fei-Fei Li

Detection: are there people?
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Attribute recognition . L
Object Categorization

e Task Description

» “Given asmall number of training images of a category,
recognize a-priori unknown instances of that category and assin
the correct category label.”

e Which categories are feasible visually?

“Fido” German dog animal living
shepherd being

Visual Object Recognition Tutorial

K. Grauman, B Lebe

Visual Object Categories Visual Object Categories

e Basic-level categories in humans seem to be defined
predominantly visually.
e There isevidence thathumans (usually)
start with basic-level categorization
before doing identification.
= Basic-level categorization is easier
and faster for humans than object
identification!
- How does this transfer to automatic
classification algorithms?

e Basic Level Categories in human categorization
[Rosch 76, Lakoff 87]

The highest level at which category members have similar

perceived shape

The highest level at which a single mental image reflects the

entire category

The level at which human subjects are usually fastest at

identifying category members

The first level named and understood by children

The highest level at which a person uses similar motor actions

for interaction with category members

v

Abstract
levels

v

Basic level

Individual
level
K. Grauman, B Lebe
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Visual Object Recognition Tutorial

K. Grauman, B Lebe

Other Types of Categories Challenges: robustness

¢ Functional Categories
» e.g. chairs = “something you cansit on”

B
E!

K. Grauman, B Lebe

Clutter

4 y
Occlusions Intra-class Viewpoint
appearance

=
e
5
I
=
3
=
>
S
8
4
8
=y
o
B
>
2
S




2/10/2016

Challenges:
context and human experience

Context cues Function Dy namics

Video credit J. Davis

Challenges: complexity

Millionsof pixelsin animage
» 30,000 human recognizable object categories

» 30+ degreesof freedom in the pose of articulated
objects(humans)

» Billionsofimagesonline
* 144K hours of newvideo on YouTube daily

« About half of the cerebral cortexin primatesis
devoted to processing visual information [Felleman
and van Essen 1991

Challenges: learning with
minimal supervision
Lelss More
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Evolution of methods

* Hand-crafted models * Hand-crafted features * “End-to-end”

* 3D geometry e Learned models learning of
i i : features and
* Hypothesize and align * Data-driven
® ¢ models***

Generic category recognition:
basic framework

Build/train object model

— (Choose a representation)

— Learn or fit parameters of model/ classifier
Generate candidates in new image

Score the candidates

Window -based object detection:recap

Training:

1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window

2. Score by classifier

Classifier

Feature
extraction

Kristen Grauman
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Issues

* What classifier?

— Factors in choosing:
« Generativ e or discriminative model?
« Dataresources — how much training data?
« How is the labeled data prepared?
« Training time allowance
« Test time requirements — real-time?
« Fit with the representation

Kristen Grauman

Discriminative classifier construction

Nearest neighbor

||
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10° examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural netw_orls
L = "rﬁ-.'re,. _
ARSON

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines Boosting
0 0 g

- relem

® o
Guyon, Vapnik Viola, Jones 2001, McCallum, Freitag, Pereira

Heisele, Serre, Poggio, Torralba et al. 2004, 2000; Kumar, Hebert 2003
2001,... Opelt et al. 2008, ... .

Conditional Random Fields

Kristen Grauman

Siideadapted from AntonioTorrlba

Issues

* What categories are amenable?

— Similar to specific object matching, we expect
spatial lay out to be fairly rigidly preserved.

— Unlike specific object matching, by training
classifiers we attempt to capture intra-class v ariation
or determine required discriminativ e features.

Kristen Grauman

Window-based models:
Three landmark case studies

=]

gy ¢

Boosting + face

Viola & Jones eg., Hays & Efros

NN + scene Gist
detection classification detection

SVM + person

e.g., Dalal & Triggs

Viola-Jones face detector

Main idea:

— Represent local texture with efficiently computable
“rectangular” features within window of interest

— Select discriminativ e features to be weak classifiers
— Use boosted combination of them as final classifier

— Form a cascade of such classifiers, rejecting clear
negativ es quickly

Kristen Grauman

Boosting intuition

Weak

Classifier 1 \ .

Slide credit Paul Viola.
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Boosting illustration

Weights
Increased o -

Boosting illustration
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Boosting: training

» Initially, weight each training example equally

« Ineach boosting round:
— Find the weak leamer that achieves the lowest weighted training error
— Raise weights of training examples misclassified by curent weak leamer
« Compute final classifier as linear combination of all weak
learners (weight of each learner is directly proportional to
its accuracy)

« Exact formulas for re-weighting and combining weak
learners depend on the particular boosting scheme (e.g.,
AdaBoost)

Slide credit: Lana Lazebnik

Boosting: pros and cons

» Advantages of boosting
Integrates classification with feature selection

Complexity of training is linear in the number of training
examples

Flexibility in the choice of weak learners, boosting scheme
Testing is fast
Easy to implement

.

.

.

» Disadvantages
« Needs many training examples
+ Often found not towork as well as an alternative
discriminative classifier, support vector machine (SVM)
— especially for many-class problems

Siide credit Lana Laz ebrik]

Viola-Jones detector: features

§ = E IEI “Rectangular” filters
: Feature output is difference between

B gﬂ @E adjacent regions

L. Value at (x,y) is
Efficiently computable - SUM-Of pixels

L X y .
with integral image: any | e ey e
sum can be computed in |

constant time. — W

Integral image

Kristen Grauman

Computing sum within arectangle

* Let A,B,C,D be the
values of the integral
image at the corners of a
rectangle

* Then the sum of original
image values w ithin the
rectangle can be c A
computed as:

sum=A-B-C+D

* Only 3 additions are
required for any size of
rectangle!

Lana Lazebnik
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Viola-Jones detector: features

i = E IEI “Rectangular” filters
__ Feature output is difference between
B adjacent regions
¢ [

Value at (x,y) is
- Sum.of pixels
| above and to the
left of (xy)

Efficiently computable
with integral image: any
sum can be computed in
constant time

Av oid scaling images >
scale features directly Integral image
for same cost

Kristen Grauman

Viola-Jones detector: features

[ Considering all

|
n " " — possible filter
parameters: position,
= I 1 ==  scale, and type:
! | 180,000+ possible
e features associated
L I | | =, with each 24 x 24
window

Which subset of these features should we
use to determineif a window has a face?

Use AdaBoostboth to select the informative
wsen sl£@tuUres and to formthe classifier

Viola-Jones detector: AdaBoost

* Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

é. 1o, 1o,

Resulting weak classifier:

i : ’ Hif Ex) >0
e—+eLte—0o88 o> 2 K r
hi{x) {-l otherwise
. ebessece o

: —L(x)—>

Outputs of a possibe
rectangle feature on
faces and non-faces.

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

Kristen Grauman

Viola-Jones Face Detector: Results

= First two features
selected
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Cascading classifiers for detection

All sub-windows,
multiple scales

S ol il i it o S

stage1 \Fce [ stage2 \Face [ stage3 \Face | petectionata
classifier classifier classifier sub-window
lNon-iace 1Non-face lNon-face

Rejected sub-windows

« Form a cascade with low false negativ e rates early on

« Apply less accurate but faster classifiers first to immediately
discard windows that clearly appear to be negative

Kristen Grauman

Viola-Jones detector: summary

Train cascade of
classifiers with
AdaBoost

N
LI

eI | REES

Selected features,
thresholds, and weights

Non-faces

Train with 5K positives,350M negatives
Real-time detector using 38layer cascade
6061 featuresin all layers

[Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/] Kristen Grauman
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Viola-Jones detector: summary

* A seminal approach to real-time object detection
¢ Training is slow, but detection is very fast
¢ Key ideas

> Integral images for fast feature evaluation

» Boosting for feature selection

» Attentional cascade of classifiers for fast rejection of non-
face windows

P. Viola and M. Jones. Rapid object detection using aboosted cascade of simple features.

CVPR 2001.

P. Viola and M. Jones. Robust reattime face detection, IJCV 57(2), 2004.

Window-based models:
Three landmark case studies

Boosting + face SVM + person

NN + scene Gist
detection classification detection

Viola & Jones e.g., Hays & Efros e.g., Dalal & Triggs

Nearest Neighbor classification

« Assign label of nearest training data point to each
test data point

Black =negative

8 Nov el testexample
Red = positive

Closesttoa
positive example
from thetraining
set, so classify it
as positive.

from Duda et a.

Voronoi partitioning of feature space
for 2-category 2D data

K-Nearest Neighbors classification
« For anew point, find the k closest points from training data
» Labels of the k points “vote” to classify

L. k=5
Black = negative . 0

A + . ** If querylandshere,the5
Red = positive . e

2=, "<+ * NN consistof 3 negatives
1, @ - and 2 positives, so we
2" * «°  classifyit asnegatve.

Xy

Source:D. Low:

80M Tiny Images [Torralba et al. 2008]

Target 7,900 790,000 79,000,000

Another nearest neighbor
recognition example



http://research.microsoft.com/en-us/um/people/viola/pubs/detect/violajones_cvpr2001.pdf
http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/viola04ijcv.pdf
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Where in the World? 6+ million geotagged photos
: by 109,788 photographers

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. Annotated by Flickr users
CVPR 2008.]

Spatial Envelope Theory of Scene Representation Global texture:
Oliva & Torralba (2001) . TTatPetl
capturing the “Gist” of the scene

Capture global image properties while keeping some spatial

inf ormation Steerable
V = {energy at each orientation and
scale} = 6 x 4 dimensions

= 80 feafures

— |V~ PcA—i
|

G
A scene isasinglesurface thatcan be Gist
represented by global (statistical) descriptors descriptor

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003

Stide Credit: Aude Olivia

Scene Matches

Coly

Which scene properties are relevant?

* Gist scene descriptor “

* Color Histograms - L¥*A*B* 4x14x14 histograms

* Texton Histograms— 512 entry, filter bank based “
* Line Features—Histograms of straightline stats -

co

[Hays and Efros. im2gps: Estimating _Geographic_Information froma Single Image CVPR 2008.]
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Scene Matches

[Hays and Efros. im2gps: Estimating _Geographic_Information froma Single Image. CVPR 2008

The Importance of Data

= First Nearest Neighbor Scene Match
= = = Chance- Random Scenes

09 038 154 616 246 9.5 394 1576 6,304
Database size (thousands of images, log scale)

Percentage of Geolocations within 200km
o

[Haysand Efros. im2gps: Estimating Geographic Information from aSingle Image. CVPR 2008.]

[Hays and Efros. im2gpS™OeWMBeME Geographic_Information from a Single Image. CVPR20®

Window-based models:
Three landmark case studies

.»%;R B

Nearest neighbors: pros and cons

* Pros:

— Simple to implement EI IEI
— Flexible to feature / distance choices = e - '
— Naturally handles multi-class cases - "

— Can do well in practice with enough representativ e data

T
Boosting + face NN + scene Gist SVM + person

* Cons: detection classification detection
— Large search problem to find nearest neighbors
— Storage of data Viola & Jones e.g., Hays & Efros eg., Dalal & Triggs

— Must know we hav e a meaningful distance function

Kristen Grauman
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Support Vector Machines (SVMs)

+ Discriminative
classifier based on
optimal separating
line (for 2d case)

* Maximize the margin
betw een the positive
and negative training
examples

Support vector machines

*  Want line that maximizes the margin.
4 7
& Tx
42, %76
+ AN
6 o\ ®©

z

X; positive (y; =1): X;-W+b>1
X, negative (y; =-1): X;-w+b<-1

For support, vectors, X -W+b==+1

Distance between point | X -W+b]

and line: (]

For support vectors:

wix+b 1 | -1 2
Ml Wl Il I

Finding the maximum margin line

1. Maximize margin 2/|w]|
2. Correctly classify alltraining data points:

X; positive (y; =1): X;-W+b>1
X; negative (y, =-1):  x,-w+b<-1

Quadratic optimization problem:

o 1
Minimize EWTW

Subjectto y;(w-x;+b)>1

Finding the maximum margin line
 Solution: W=zi a;YiX;
b=y;—w-x; (forany supportvector)
W-x+b=2" ayX X +b
+ Classification function:
f(x) =sign (w-x+b)

C. Burges, ATuiorial on Suppart Vecior Machines for Patiern Data Mining and Discovery, 1]

Person detection
with HoG’s & linear SVM's

* Map each grid cell in the
input w indow to a histogram
counting the gradients per
orientation.

* Train a linear SVM using
training set of pedestrian vs.
non-pedestrian windows.

Dalal & Triggs, CVPR
2005

Code available:
http://pascal.inrialpes.fr/soft/olt/

HoG descriptor

Orientation Voting
Overlapping Blocks

Input Image Gradient Image
' Local Normalization

Dalal & Triggs, CVPR 2005 Code available: http://pascal.inrialpes.fr/saft/olt/!

11


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Person detection
with HoGs & linear SVMs

Histograms of Oriented Gradients for Human Detection, Navneet Dalal, iggs,
International Conference on Computer Vision & Pattern Recognition - June 2005
htto://lear inrialoes. fr/oubs/2005/DTO 5/

Non-linear SVMs

Datasets that are linearly separable with some noise

work out great: : :
i; 0| ©; x

But what are we going to do if the dataset is just too hard?

— 10— 00
X

0
How about... mapping data to a higher-dimensional
space:

Nonlinear SVMs

» The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(xi,x;) = o(X;) - o(X;)

» This gives a nonlinear decision boundary in the
original feature space:

ZaiyiK(xi,x) +b

Example

2-dimensional vectors x=[X; X,];
let K(,x)=(1 +X%"%)?
Need to show that K(x,%)= ¢ (%) To(%):

K%)= +%%)?,

= 1+ XX + 2 XiaXjp XioXja+ Xig™Xjo? + 2XinXjs + 2XigXi

=[1 xi? V2 XinXip Xio? V2Xig \/ZXiz]T

[1 Xi? V2 XjXp X2 V2Xj2 V2Xg0]
=o(%) To(%), |
where g(X) = [1 X:2 V2 X1Xo X2 V2X; V2X]

Examples of kernel functions

Linear: K(x,X,) = XiTXj
2
i [x =l
Gaussian RBF:  K(x;.X;) :exp(fﬁ)

Histogram intersection:

K(x.x;) =Y min(x (k),x; (k))

SVMs for recognition

1. Define y our representation for each
example.

2. Select akernel function.

3. Compute pairwise kernel values
between labeled examples

4. Use this “kernel matrix” to solve for
SVM support v ectors & weights.

5. To classify a newexample: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.

Kristen Grauman
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
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What about a matching kernel?

X = {%(,...,%m}

Local feature correspondence useful similarity
measure for generic object categories

Partially matching sets of features

Optimal match: O(m3)
Greedy match: O(m?log m)
Pyramid match: O(m)

X= (%1 5n) Y={f1..%) (m=numpts)
min x; — T(x,
\rX—Y Z i = ( ’)Hwte matching kernel that

xeX
makes It practical to compare large sets of features
based on their partial correspondences.

[Previous work: Indyk & Thaper, Bartal, Charikar, Agarwal &
Varadarajan, ...]

Kristen Grauman

Kristen Grauman

Pyramid match: main idea

Feature space partitions
serv e to “match” the local
descriptors within
successiv ely wider regions.

Pyramid match: main idea

l_lLH\.
S IILLHV
I(Hy Hy)= Zmiu(H\'UJ-H\ n
j

=3

Histogram intersection
counts number of possible
matches at a given

partitioning.

X :;)‘(L
Kristen Graumdn

Pyramid match kernel

KA(X,Y) = iﬂ:T“ I(HE\?J_ H{?)) -7 (HFJ*IJ_H‘E@—I))

Y

Pyramid match kernel

44

wn' n A <<‘
O N +

Optimal match: O(m?3)
Pyramid match: O(mL)

s
.

———
measures number of newly matched £ T | ™~ l
difficulty of a pairs at level @ ﬂ b R == [\ \ fieg
match at lewel @ R + T b &% \\
e N
s . ;
» For similarity, weights inv ersely proportional to bin size optimal partial
(or may be learned) o matching
* Normalize these kernel values to av oid fav oring large sets =
[Grauman & Darrell, ICCV 2005] )?m} Y = {37| y-oe e)—"n} Kristen Grauman
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Unordered sets of local features:
No spatial layout preserved!

Too much?

Too little?

Spatial pyramid match

+ Make a pyramid of bag-of-words histograms.

* Provides some loose (global) spatial layout
information

[Lazebnik, Schmid & Ponce, CVPR 2006]

Spatial pyramid match

* Make a pyramid of bag-of-words histograms.

* Provides some loose (global) spatial layout
information

KE(X,Y) Zr X Yin)

‘ Sum over PMKs

a1 computed in image

| coordinate space,
one per word.

[Lazebnik, Schmid & Ponce, CVPR 2006

Spatial pyramid match

» Can capture scene categories well---texture-like patterns
but with some v ariability in the positions of all the local

S I iR

el Bl O IRE
s n.u

bedroom
inside city” street”

Sl S

highway*

B T

mountain®

1
tall building*

Spatial pyramid match

+ Can capture scene categories well---texture-like patterns
but with some v ariability in the positions of all the local
pieces.

+ Sensitive to global shifts of the view

L

bedroom

tall building”

Confusion table

Multi-class SVMs

* Achieve multi-class classifier by combining a number of
binary classifiers

* Oneyvs. all
— Training: learn an SVM for each class vs. the rest
— Testing: apply each SVM to test example and assign
toit the class of the SVM that returns the highest
decision value

* Oneyvs.one
— Training: learn an SVM for each pair of classes
— Testing: each learned SVM “votes” fora class to
assign to the test example

Kristen Grauman

14
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SVMs: Pros and cons

Basic recognition models so far
* Pros

Kernel-based framework is very powerful, flexible

Often a sparse set of support vectors — compact at test time

Work very well in practice, even with very small training
sample sizes

.

* Cons

* No“direct” multi-class SVM, must combine two-class SVMs
« Can be tricky to select best kernel function for a problem
« Computation, memory

— During training time, must compute matrix of kemel values for
every pair of examples

Instances: Categories:
— Leaming can take a very long time for large-scale problems recognition by Holistic appeargnce
alignment models (and sliding

window detection)

Kristen Grauman

Summary so far Evolution of methods
» Basic pipelineforwindow-based detection
— Model/representation/classifier choice
— Sliding window and classifier scoring

* Hand-crafted models ¢ Hand-crafted features * “End-to-end”
+ Discriminative classifiersforwindow-based + 3D geometry + Learned models learning of
representations . ) A . ) features and
~'Boosting Hypothesize and align Data-driven models* **
« Viola-Jones face detector example

— Nearest neighbors
* Scene recognition example
« 80M Tiny Images studies
— Support v ector machines
* HOG person detection example
« Pyramid match kemel

Next

¢ Convolutional neural networks
— Guest lecture by Dinesh Jayaraman
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