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Announcements

* Reminder: Assignment 2 isdue Mar9 and Mar10

* Be ready to run your code again on anew test set on
Mar 10

* Vision talk nextTuesday 11am:
« Distinguished Lecture
* Prof. Jim Rehg, Georgia Tech
* “Understanding Behavior through First Person Vision”

Last time: Mid-level cues

Tokens beyond pixels and filter responses
but before object/scene categories

» Edges, contours
* Texture

* Regions

» Surfaces
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Continuity, explanation by occlusion

Ahkkkk hhkkk hhkkkk

IN CINEMAS SEPT 8




. Benjamin Lee + Fotow

Incredible way of making my two star review
seem like | didn't hate the film

Akhkk Khkkk hkhkk

http://entertainthis.usatoday.com/2015/09/09how-tom-hardys-legend-
poster-hid-this-hilariously-bad-review/
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Today

* Overview of object detection challenges
* Global scene context
* Torralba’s GIST for contextual priming
* Part-based models
* Deformable part models (brief)
* Implicit shape models
* Hough forests
 Evaluating a detector
* Precision recall
* Visualizing mistakes

Image classification challenge

- TR

ImageNet




Object detection challenge

PASCAL VOC
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Recall: Window-based representations
Four landmark case studies

Boosting + face NNI N S?fe";_e's‘ SVM+person  CNNs +image
detection classiiication detection classificaion
Viola & Jones e.g., Dalal & Triggs  e.g., Krizhevsky et

e.g., Hays & Efros a

Recall: Window -based object detection
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Training examples

Training:

1. Obtain training data
2. Define features

3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

— | Car/non-car
Classifier

Feature
extraction

Kristen Grauman




2/23/2016

* Whataretheprosandcons of sliding window-
based objectdetection?

Window-based detection: strengths

e Sliding window detection and g lobal appearance
descriptors:
» Simple detection protocol to implement
~ Good feature choices critical
» Past successes for certain classes

Visual Object Recognition Tutorial

Kristen Grauman

Window-based detection: Limitations

¢ High computational complexity
» Forexample: 250,000 locations x 30 orientations x 4 scales =
30,000,000 evaluations!
~ If training binary detectors independently, means cost increases
linearly with number of classes

¢ With so many windows, false positiverate better be low
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2/23/2016

Limitations (continued)

* Notallobjectsare “box” shaped

Visual Object Recognition Tutorial

Kristen Grauman

Limitations (continued)

e Non-rigid, deformable objects notcapturedwellwith
representations assuming a fixed 2d structure; or must
assume fixed viewpoint

e Objects with less-regular textures not captured well

Visual Object Recognition Tutorial

Kristen Grauman

Limitations (continued)

¢ |f considering windows in isolation, context is lost
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Sliding window Detector’s view
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Kristen Grauman

Figure aedit: Derek Hoiem
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Limitations (continued)

* In practice, oftenentails large, cropped training set
(expensive)

e Requiring good match to aglobal appearance description
can lead to sensitivity to partial occlusions
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Kristen Grauman

Image credit: Adam, Rivin, & Shimshoni

Beyond image classification:
Issues in object detection

* How to perform localization?
* How to perform efficientsearch?

* How to represent non-box-like objects? non-
texture-based objects? occluded objects?

* How to jointly detect multiple objectsin a scene?

* How to handle annotation costs and quality control
forlocalized, cropped instances?

* How to model scene context?

Challenges: importance of context

slide credit Fei-Fé, Fergus& Torralba




Global scene context

Strong relationship betw een the background and
the objects that can be found inside of it

o A

« Contextual Priming for Object Detection. Antonio Torralba. 1JCV 2008.
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Global scene context

Strong relationship betw een the background and
the objects that can be found inside of it

Given GIST descriptor, represent probability of
+ Object being present
» Object being present at a given location/scale

Provides a prior to detector that may help speed
or accuracy

« Contextual Priming for Object Detection. Antonio Torralba. 1JCV 2008.

Global scene context
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« Contextual Priming for Object Detection. Antonio Torralba. 1JCV 2008.

Predicting scale

« Contextual Priming for Object Detection. Antonio Torralba. 1JCV 2003.

* Video




Today

* Overview of object detection challenges
* Global scene context
* Torralba’s GIST for contextual priming
* Part-based models
« Deformable part models (brief)
 Implicit shape models
* Hough forests
¢ Evaluating a detector
* Precision recall
* Visualizing mistakes

2/23/2016

Beyond image classification:
Issues in object detection

* How to perform localization?
* How to perform efficientsearch?

* How to represent non-box-like objects? non-
texture-based objects? occluded objects?

* How to jointly detect multiple objectsin a scene?

* How to handle annotation costs and quality control
forlocalized, cropped instances?

* How to model scene context?

Beyond “window-based” object
categories?

Kristen Grauman
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Generic category recognition:
representation choice

FEEERMM

Window-based Part-based

2/23/2016

Part-based models

¢ Originsin Fischler &
Elschlager 1973

+ Model has two components LEFT (4%
> parts
(2D image fragments)
» structure
(configuration of parts)

Shape/structure representation
in part-based models

“Star” shape model

~ Deformable parts model

G [Felzenszwalb et al ]
Q Q » Implicit shape model
s[Leibeet al]
° e »Hough forest
Go) J[Galletal]

~Parts mutually independent

N image features, P parts in the model

Kristen Grauman
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Spatial models:
Connectivity and structure

Fergus etal. 03 Leibe etal.'04, 08 Crandall etal. 05 Felzenszwalb &
Fei-Fei etal. 03 Crandall et al. 05 Hutenlocher ‘05
Fergus etal. '05

f) Hier g) Sparse flexible model
Csurka ‘04 Bouchard & Triggs ‘05 Carneiro & Lowe ‘06
Vasconcelos ‘00

from [Cameiro & Lowe, ECCV’06]
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Deformable part model
Felzenszwalb et al. 2008

* A hybrid window + part -based model

=]
ME -

root filters part filters deformation
coarse resolution  finer resolution models

Felzenszwalb et al.

Viola & Jones

Dalal & Triggs Main idea: Global template (‘root filter”)

plus deformable parts whose placements
relative to root are latent variables

Deformable part model
Felzenszwalb et al. 2008

» Mixture of deformable part models

» Each component has global template +
deformable parts

* Fully trained from bounding boxes alone

Adapted from Felzenszwalb’s slides at http://people.cs.uchicago.edu/~pfftalks/
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Beyond image classification:
Issues in object detection

* How to perform localization?
* How to perform efficientsearch?

* How to representnon-box-like objects? non-
texture-based objects? occluded objects?

* How to jointly detect multiple objectsin a scene?

* How to handle annotation costs and quality control
for localized, cropped instances?

* How to model scene context?

2/23/2016

Voting algorithms

* It's not feasible to check all combinations of features by
fitting a model to each possible subset.

* Voting is a general technique where we let the features
vote for all models that are compatible with it.
— Cycle through features, cast wotes for model parameters.

— Look for model parameters that receive a lot of votes.

* Noise & clutter features will cast v otes too, but ty pically
their v otes should be inconsistent with the majority of
“good” features.

Kristen Grauman

Recall: Hough transform for line fitting
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image space Hough (parameter) space

How can we use this to find the most likely parameters (m,b)
for the most prominent line in the image space?

« Let each edge point in image space vote for a set of
possible parameters in Hough space

« Accumulate votes in discrete set of bins; parameters with
the most votes indicate line in image space.

13



Recall: Generalized Hough transform

* A hypothesis generated by a single match may be
unreliable,

* So let each match vote for a hy pothesis in Hough space

Model Novel image

2/23/2016

Implicit shape models

» Visual vocabulary is used to index votes for
object position [a visual w ord =“part”]

visual codeword with
displacement vectors

training image annotated with object localization info

B. Leibe, A. Leonardis, and B. Schiele, ' izati
i i icit , ECCV Workshop on Statistical

Leaming in Computer Vision 2004

Implicit shape models

» Visual vocabulary is used to index votes for
object position [a visual w ord =“part”]

test image

B. Leibe, A. Leonardis, and B. Schiele, i I izati
i i ici , ECCV Workshop on Statistical
Leaming in Computer Vision 2004

14


http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Implicit shape models: Training

1. Build vocabulary of patches around
extracted interest points using clustering
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Implicit shape models: Training

1. Build vocabulary of patches around
extracted interest points using clustering

2. Map the patch around each interest point to
closestword

Implicit shape models: Training

1. Build vocabulary of patches around
extracted interest points using clustering

2. Map the patch around each interest point to
closestword

3. For each word, store all positions it w as
found, relative to object center

Ry — "y

15



Implicit shape models: Testing

1.

w

Given new test image, extract patches, match to
vocabulary words

Cast votes for possible positions of object center
Search for maximain voting space

(Extract weighted segmentation mask based on
stored masks for the codebook occurrences)

What is the dimension of the Hough space?

2/23/2016

Implicit shape models: Testing

Original Image

Interest Points
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Example: Results on Cows

Original image

K. Grauman, B Lebe
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Visual Object Recognition Tutorial

Example: Results on Cows

Interest points

2/23/2016

K. Grauman, B. Lebe

Visual Object Recognition Tutorial
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Example: Results on Cows

Matched patches

K. Grauman, B. Lebe

Example: Results on Cows

Votes

K. Grauman, B Lebe
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Visual Object Recognition Tutorial

Example: Results on Cows

15t hypothesis

K. Grauman, B. Lebe

2/23/2016

Visual Object Recognition Tutorial
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Example: Results on Cows

2" hypothesis

K. Grauman, B Lebe

Example: Results on Cows

3rd hypothesis

K. Grauman, B Lebe
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Detection Results

e Qualitative Performance
» Recognizes different kinds of objects
» Robust to clutter, occlusion, noise, low contrast
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K. Grauman, B. Lebe
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Today

* Overview of object detection challenges
* Global scene context
* Torralba’s GIST for contextual priming
* Part-based models
* Deformable part models (brief)
* Implicit shape models
* Hough forests
* Evaluating a detector
* Precision recall
* Visualizing mistakes

R,
inbndge

Class-Specific Hough Forests
for Object Detection

Juergen Gall* and Victor Lempitsky?

19



ST w7

= Parts of an object provide useful
spatial information

= Classification of object parts
(foreground/background)

= Combine spatial information and
class information during learning

R,
inbndge

Random Forest

= Image patch:

. 1 2 e ./\.
L= (. 7. 00 =
oy Yy

= Binary tests:

0, ifI*(p.g) < I*(r.s) + 1 )
toprer (1) = ) if T ur‘ q) < I*(r,s) ﬂ/m
1. otherwise,

= Binary tests are selected during )
. Leaf nodes: contain
training from arandom subset of training patches and
all binary tests displacement vectors

R,
inbndge

Training

= Training set:

A= {P; = (T;,¢,d;)}
= Class information: c; (class label)
= Spatial information: d; (relativ e position to object center)

2/23/2016
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Binary Tests Selection

BIM llII [ LR LR

= Test with optimal split:
argmin (l T.({pi th (Z;)=0}) + U, ({p:] t*(7,)=1 }))
o
= Class-label uncertainty :
U (A) = |A] - Entropy({c:})
= Offset uncertainty:

Us(A) = 37 (d; —da)?
i 1

= Interleaved: Ty pe of uncertainty is randomly selected for
each node

2/23/2016

R,
inbndge

Leaves
o 2
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R,
inbndge

Detection

21
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Multi-Scale and Multi-Ratio

llllpl

= Multi Scale: 3D Votes (x, y, scale)

sk

2/23/2016

R,
inbndge

Comparison

B’!x_l llllpl

Methods |UlU('-Singlc UIUC-Multi
Hough-based methods
Implicit Shape Model [10] 91%
ISM+ver ation [10] 97.5% 95%

Boundary Sha

> Model [17] 85% -

Random forest based method
LayoutCRF [27] [ 93% [ =

State-of-the-art

Mutch and Lowe CVPR'06 [15] 99.9% 90.6%
Lampert et al. CVPR'08 [9] 98.5% 98.6%

Our approach
98.5% ‘ 98.6%

Hough Forest
HF - Weaker supervision

94.4%

R,
inbndge

Pedestrians (INRIA)

22
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Mt
dnbndge

Pedestrians (TUD)

Today

* Overview of object detection challenges
* Global scene context
* Torralba’s GIST for contextual priming
* Part-based models
* Deformable part models (brief)
* Implicit shape models
* Hough forests
* Evaluating a detector
* Precision recall

* Visualizing mistakes

Evaluating object detectors

* How accurately is the detector performing?
* Whathasthedetector learned?

23



Scoring a sliding window detector

arca(By (1 Byt)
m'rufBP L Bq, )

ay, =

a, >0.5= correct

We'll say the detection is correct (a “true positive”) if
the intersection of the bounding boxes, divided by
their union, is > 50%.

Kristen Grauman
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Scoring an object detector

1 1" o 4 INRIA_Genetic (85.9)
0.9 i INRIA_Flat (84 5)
0 8|.~. XRCE (84.0)
v TKK (82.2)
0.7} QMUL_LSPCH (80 8)
s 0,6[ QMUL_HSLS (80.6)
8 i UVA_SFS (80.4)
% 05 UVA_FuseAll (79.4)
§ | UVA_MCIP (78.6)
0.4 ToshCam_svm (78.1)
03 ToshCam_rdf (77.9)
INRIA_Larlus (77.2)
0.2} Tsinghua (76.9)
01 MPI_BOW (75.7)
UVA_Bigrams (74 6)
0t UVA_WGT (74.2)
0 01020304 0506070809 1 PRIPUVA (62.0)
recall (chance) (43.4)

« If the detector can produce a confidence score on the
detections, then we can plot its precision vs. recall as a
threshold on the confidence is v aried.

« Average Precision (AP): mean precision across recall

levels

Understanding classifier mistakes

24



Carl Vondrick http://web.mit.edu/vondrick/ihog/slides.pdf

2/23/2016

What information does HOG have?

Image HOG

ick, MIT; Aditya

HOGGLES: Visualizing Object Detection Features

What information is lost?

25
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HOGGLES: Visualizing Object Detection Features

Method: Paired Dictionary

Antonio Torralba, MIT
http://w

HOGGLES: Visualizing Object Detection Features
A microscope
to view HOG

ing Object Detection Features;
; Aditya Khosla; Tomasz Malis
T

https//web.mit.edu/vondrick/ihog/slides pdf

HOGGLES: Visualizing Object Detection Features

Human Vision HOG Vision

26



HOGGLES: Visualizing Object Detection Features

HOGgles: Visualizing Object Detection Features; ICCV 2013
Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz; Antonio Torralba, MIT
http://web mit.edu/vondrick/ihog/slides pdf
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Announcements

* Reminder: Assignment 2 isdue Mar9 and Mar10

* Be ready to run your code again on anew test set on
Mar 10

* Vision talk next Tuesday 11am:
« Distinguished Lecture
* Prof. Jim Rehg, Georgia Tech
* “Understanding Behavior through First Person Vision”
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