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Improvement on PASCAL <1.5%Slide credit: Zhang et al.



What is this object?
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What is this object?

Slide credit: Zhang et al.



Why didn’ context help?



Why didn’ context help?

Perhaps we are not using the right data



• On average: 1.5 object classes and 2.7 object 
instances per image  

• Average camera field of view: 40° - 60° horizontal

PASCAL VOC



• 180° horizontal field of view 

• Ability to see depth 

• Ability to change viewpoint

Human Vision



Remedy



PanoContext

Slide credit: Zhang et al.



Input: Panorama

PanoContext

Slide credit: Zhang et al.



Input: Panorama Output: 2D projected result

Output: 3D model
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Input: Panorama Output: 2D projected result

Output: 3D model
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Output: 3D room exploration
Slide credit: Zhang et al.



Pipeline



Pipeline

Krizhevsky, Alex, et al. "Imagenet classification with deep convolutional neural networks." NIPS. 2012.



• Vanishing point estimation for panoramas  

• Room layout hypothesis generation  

• 3D object hypotheses generation  

• Whole-room scene hypotheses generation  

• Data-driven holistic ranking

Pipeline
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• Vanishing point estimation for panoramas  

• Room layout hypothesis generation  

• 3D object hypotheses generation  

• Whole-room scene hypotheses generation  

• Data-driven holistic ranking

Pipeline

……

✓!



WholeRoom

Object

RoomInput

Generate a pool of hypotheses

Slide credit: Zhang et al.



WholeRoom

Object

RoomInput

Generate a pool of hypotheses

Slide credit: Zhang et al.



Room layout hypothesis

Slide credit: Zhang et al.



Room layout hypothesis

Line segments detection Algorithm

Slide credit: Zhang et al.



Room layout hypothesis

Hough transform for vanishing point

Slide credit: Zhang et al.



Room layout hypothesis

Hough transform for vanishing point

Slide credit: Zhang et al.

Classify a vanishing direction for each line



Source: Wikipedia, Emaze



Sample	5	line	segments	to	generate	a	room	layout

Room layout hypothesis
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Room layout hypothesis

Sample	5	line	segments	to	generate	a	room	layout
Slide credit: Zhang et al.
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Room layout hypothesis

Sample	5	line	segments	to	generate	a	room	layout
Slide credit: Zhang et al.



Room layout hypothesis

Pixel-wise surface direction estimation 

Slide credit: Zhang et al.



Line segments

Room layout hypothesis

Slide credit: Zhang et al.



Line segments

Room layout hypothesis

Slide credit: Zhang et al.



Surface normal estimation

Line segments

Room layout hypothesis

Slide credit: Zhang et al.



Surface normal estimation

Line segments

Room layout hypothesis

Slide credit: Zhang et al.



0.770Consistency Score:

Surface normal estimation

Line segments

Room layout hypothesis

Slide credit: Zhang et al.
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Surface normal estimation

Line segments

Room layout hypothesis

Consistency Score:
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Surface normal estimation
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Room layout hypothesis

Consistency Score:
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Surface normal estimation

Line segments

Room layout hypothesis

Consistency Score:
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Surface normal estimation

Line segments

Room layout hypothesis
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Surface normal estimation

Line segments

Room layout hypothesis
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0.770 0.711

Surface normal estimation

Line segments

Room layout hypothesis

Consistency Score:

Slide credit: Zhang et al.

Top 50
 only



WholeRoom

Object

RoomInput

Generate a pool of hypotheses

Slide credit: Zhang et al.



Input: a single-view panorama Output: 3D reconstructionOutput: object detection
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Input: a single-view panorama Output: 3D reconstructionOutput: object detection
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Cuboid detection

Fitted cuboids

Slide credit: Zhang et al.



Cuboid detection

Selective search

DPM-esque

Slide credit: Zhang et al.

6 rays and  
3 vanishing points

Largest IoU  
with the segment



Semantic classification

bed 
desk 
sofa 
… 

chair

Features Random  
forest

Object 
 categories

• Size 
• Aspect ratio & Area 
• Distance to walls

Slide credit: Zhang et al.



70%	Accuracy

Semantic classification

bed 
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sofa 
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chair

Features Random  
forest

Object 
 categories

• Size 
• Aspect ratio & Area 
• Distance to walls

Slide credit: Zhang et al.



bed

Slide credit: Zhang et al.

Semantic classification



nightstand

Slide credit: Zhang et al.

Semantic classification



painting

Slide credit: Zhang et al.

Semantic classification



Slide credit: Zhang et al.

Pairwise constraint



WholeRoom

Object

RoomInput

Generate a pool of hypotheses

Slide credit: Zhang et al.



Data-driven sampling

Slide credit: Zhang et al.

With P(layout) ∝ normal consistency score

Randomly sample  
a room layout 



Data-driven sampling

Slide credit: Zhang et al.

With P(layout) ∝ normal consistency score

Randomly sample  
a room layout 



Data-driven sampling

Slide credit: Zhang et al.



Decide	number	of	object	
based	on	prior	distribu<on:
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Data-driven sampling

Slide credit: Zhang et al.



Decide	object	sampling	sequence	
based	on	bo?om	up	scores:
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Bottom-up score as bed

Sample a bed in empty room first…

70605040302010

HighLow
Confidence

Data-driven sampling

Slide credit: Zhang et al.



Randomly select one according to bottom up priority

Sample a bed in empty room first…
Data-driven sampling

Slide credit: Zhang et al.

rectangle detection score, semantic classifier score 



Randomly select one according to the bottom up + pair-wise priority

Data-driven sampling
Then, sample a nightstand given a bed

Slide credit: Zhang et al.

mean distance to the K nearest neighbors 



Slide credit: Zhang et al.

Pairwise constraint



Keep on sampling until finishing the list…

List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

bed
nightstand

painting

Data-driven sampling

Slide credit: Zhang et al.
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List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list…
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List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list…
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List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror
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List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror

Keep on sampling until finishing the list…
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Whole-room sampling is finished.

Keep on sampling until finishing the list…
Data-driven sampling

Slide credit: Zhang et al.
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Matching costBinary label

Holistic ranking



Holistic feature
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Hypothesis

Holistic feature
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Pick 10 with the lowest cost
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2D and 3D boxy representation of the scene

Final outputs
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DPM: Wrong relative position Our detection

• Helps to decide sizes of objects 
• Helps to decide number of objects 
• Helps to constrain relative position

How does 3D context help?

nightstand

 

desk

Slide credit: Zhang et al.



Context v.s. Appearance
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• Context is as powerful as local appearance for detection 
• Context is complementary with local appearance

Context+Detector
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Context v.s. Appearance
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• Context is as powerful as local appearance for detection 
• Context is complementary with local appearance

Context+Detector
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PanoContext

Slide credit: Zhang et al.



Is larger FOV helpful for 
room layout estimation? 



Is larger FOV better for 
context? 



My Take

• Elements of the ensemble could be valuable 

• Too data driven, hard to generalize  

• Future: relax the cuboid constraints, try other ways 
to integrate visual recognition in the pipeline



Discussion
• How can the model be generalized to other scene 

categories (e.g. outdoor)? 

• Performance on deformable or non-axis aligned 
objects? 

• Chairs and other non-standard layout objects? 

• Indoor understanding and VQA?



Is context important in 
sampling and ranking? 






