
Building Rome in a Day 
Agarwal, Sameer, Yasutaka Furukawa, Noah Snavely, Ian 

Simon, Brian Curless, Steven M. Seitz, and Richard Szeliski. 

Presented by Ruohan Zhang 

Source: Agarwal et al., Building Rome in a day.  



Source: Agarwal et al., Building Rome in a day.  

City of Dubrovnik, 4619 images, 3485717 points 
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Method Overview 
•  The correspondence problem (distributed implementation) 

– SIFT + ANN (approximate nn) + ratio test + RANSAC (rigid scenes) to clean 
up matches 

–  large scale matching: match graph 

• nodes are images, edges are matches 

• propose edges (matches) and then verify 

• proposal: whole image similarity (visual word) + query expansion 

– multiple images: feature track generation (connected component) 

 

• The structure from motion (SFM) problem: given corresponding points, solve 
for 3D positions of the object interest points, camera orientations, positions, 
and focal lengths 

– practical purpose: skeletal set + incremental solution (bundle adjustment) 

– Multiview stereo to recover 3D geometries 



Experiments 
1.  Datasets: objects with clean background, buildings, and street 

views 

2.  SIFT + ANN + ratio test + RANSAC 

3.  SFM Software : Bundler [7] sparse point clouds 

4. Visualization: Meshlab [8] 

 

Reconstruction quality: judge by eyes. 
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Reconstruction Quality: Image Overlaps 

• How many images do we need to obtain a good reconstruction of an object? 

Source: Seitz et al., Multiview Stereo Evaluation Dataset.   

Temple of the Dioskouroi, 317 images; Plaster stegosaurus, 363 images. 



Temple 8   Temple 16  Temple 24  Temple48  Temple Full 
(45 degrees)  (22.5 degrees)  (15 degrees)  (7.5 degrees) 
10s   20s   34s    2m12s   40m46s 

Reconstruction Quality: Image Overlaps 



Dinosaur 16               Dinosaur 24        Dinosaur 48             Dinosaur Full 
(22.5 degrees)               (15 degrees)        (7.5 degrees) 
13s                 19s                                       45s                                 15m52s 
 
 
 

Reconstruction Quality: Image Overlaps 



Reconstruction Quality: Image Overlaps 

• General rule of thumb: 

• Each point should be visible in 3+ images 

• Every 15 degrees, 24 photos with a full 360 view 

Source: Seitz et al., Multiview Stereo Evaluation Dataset.   
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Reconstruction Quality: Camera Focal Length 

• Usually obtained from the Exif tags in JPEG images. 



Focal Length Provided vs. Not 

Skull, 24 images 

Source: Furukawa & Ponce, 3D Photography Dataset.  



            Focal length provided.   Focal length not provided.  Time: 5m7s 
  



Reconstruction Quality: Camera Focal Length 

• Why helpful? The optimization objective is a nonlinear  

      least square:  

 

 

• For the original experiment, they use images both with or without this 
information, e.g., Notre Dame: 705 images (383 with focal length). 
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Reconstruction Quality: Keypoints 
- Same number of images : 24 images 
- Same camera angles 
- Same background 
- Different number of keypoints detected 

Warrior: 2616764 keypoints/image 

Soldier: 1842273 keypoints/image 

Predator: 46631415 keypoints/image 

Source: Furukawa & Ponce, 3D Photography Dataset.  



Solider:   1m56s 
Warrior:   2m30s 
Predator:   3m44s 



Reconstruction Quality: Keypoints 

Source:  Lazebnik, et al., Visual Hull Data Sets. 

Armor: 48 images,  2940712851 keypoints/image, 69min32s 



   (Demo) 



Reconstruction Quality: Notre Dame 

705 images (383 with focal length), 1876016598 keypoints/frame, 5.625 days (Demo) 

Source: Wilson & Snavely, Network principles for sfm: Disambiguating repeated structures with local context. 
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Ambiguity: Symmetry and Repeated Features 

Source: Hao et al., Efficient 2D-to-3D Correspondence Filtering for Scalable 3D Object Recognition. 

Bear: 20 images, 5773  751 keypoints/image, 3m42s   

Does ratio test help? 



Building 1, 26 images, 189732513 keypoints/image, 12m29s  

Ambiguity: Symmetry and Repeated Features 

Source: Ceylan et al., Coupled structure-from-motion and 3D symmetry detection for urban facades. 



Ambiguity: Symmetry and Repeated Features 

Source: Ceylan et al., Coupled structure-from-motion and 3D symmetry detection for urban facades. 



Building 6, 32 images, 563246941 keypoints/image, 67m54s  

Ambiguity: Symmetry and Repeated Features 



Source: Ceylan et al., Coupled structure-from-motion and 3D symmetry detection for urban facades. 

Ambiguity: Symmetry and Repeated Features 



Buildings 8, 72 images, 92832977 keypoints/image, 39m30s.  
Note the two walls that are misplaced.  

Ambiguity: Symmetry and Repeated Features 



Ambiguity: Symmetry and Repeated Features 

Source: Cohen et al., Discovering and exploiting 3d symmetries in structure from motion. 



Street, 312 images, 14144  5145 keypoints/image, 997m31s 

Ambiguity: Symmetry and Repeated Features 



Disambiguation 
Network Principles for SfM: Disambiguating Repeated Structures with Local Context 
 

Source: Wilson & Snavely, Network principles for sfm: Disambiguating repeated structures with local context. 
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More Examples: ET 

ET: 9 images, 1178243 keypoints/image, 13s  

Source: Snavely, Bundler: Structure from Motion (SfM) for Unordered Image Collections.  



More Examples: Skull2 

Skulls2, 24 images, 6324  1778 keypoints/image, 5m24s   

Source: Furukawa and Ponce, 3D Photography Dataset.  
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Computational Cost 

• Number of keypoints 

• Number of images  

 

• Breakdown 

– Extract camera info from images 

– Keypoints detection 

– Pairwise keypoints matching (match graph, a key contribution) 

– SFM 

 

• Hardware  

– Intel Core i7-5820K CPU 3.30GHZ x 12 

– 32 GB Memory 

– Geforce GTX 960 

 

 

3.64%     65.19%          31.16% 

0.005% 
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More SFM datasets at http://riemenschneider.hayko.at/vision/dataset/index.php?filter=+sfm 
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