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Problem: Object Detection
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Feature Learning with CNN

» Previous best-performance methods:
» plateaued,

» complex

» This paper: simple, scalable
» Two main contributions:

» Apply CNN to bottom-up region proposals to localize

» Fine-tune the CNN when lack of training data




aeroplane? no.

person? yes.

tvmonitor? no.

Extract region Compute CNN Classify regions
image  proposals (~2k /image) features (I EEIY)




aeroplane? no.

person? yes.

tvmonitor? no.

Input __ Extract region

image  proposals (~2k /image)

> Selective Search [Uijlings et al.]

» Objectness [Alexe et al.]

» CPMC [Carreira et al.]

» Category independent object proposals [Endres et al.]
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Linear Classifier:

> SVM
> SVM here improves accuracy! (50.9% to 54.2%) CNN classifier doesn’t stress.on precise location
> SVM will be trained with hard negatives while CNN was trained with randem background

> Softmax



Step 4: Modify Regions

» A lot of scored regions

» Reject regions with

» intersection-over-union (loU) overlap with a higher scoring selected region (learned
threshold)

» Bounding box regression

» Get higher accuracy




Training: What if we lack of training
data

» Solution:

» Use pre-trained CNN (the one trained with sufficient data)

» Fine-tune to specific task.

» Fine-tuning also increases accuracy.
» Details in paper:

» AlexNet [Krizhevisky et al.]

» Stochastic gradient descent (SGD) with learning rate of 0.001, (1/10 of initial)
» Replace 1000-way classification layer to 21-way
>

Region with >= 0.5 loU overlap with ground-truth box as positive, others as
negative.
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How does fine-tuning and bounding box
influence result

R-CNN fc6: animals
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« Conclusion:
» Error type of R-CNN is more about location. Suggesting that CNN feature is m
» Bounding box helps significantly in location problem.
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Related Future Work Papers

» Fast R-CNN, by Ross Girshick

» R-CNN is slow, training is multi-stege, features from each object proposal

» Sharing computation by computing a convolutional feature map for entire input image

» Fast R-CNN Main idea: Compute a global feature map, computing region of interest in
pooling layer, full-connected layer to give prediction and location.

» Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
by Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

» Bottleneck of Fast R-CNN is region proposals
» Faster R-CNN computes proposals with a CNN (Region Proposal Networks (RPN))




Time Comparison
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Discussion & Questions

>

1. Is simple scale the best way to make region proposals capable for CNN
input?

2. If we have a more precise CNN, will the object detection framework in this
paper be better?

3. Why do we use SVM at top layer?

4. |Is fc7 better for detection and fcé better for localization and
segmentation?

Thank youl!




