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Learning Object State Change in Videos: An Open-World Perspective
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Objective: temporally localize an object’s three 
states (initial, transitioning and end) from a video

● OSCs naturally exhibit a long-tail. Certain OSCs, such as 
melting butter, are frequently shown in videos while others like 
melting jaggery might be rarely seen.

● Prior works assume a closed vocabulary, limited to identifying 
state changes for objects observed during training. 

Open-world formulation

  

#Obj #ST #OSC
#Obj 

per ST
#Video

GT
Label?

Alayrac et al. [1] 5 6 7 1.2 630 ✅
TaskFluent [2] 25 14 32 2.3 809 ✅
ChangeIt (Train) [3] 42 27 44 1.6 34,428

ChangeIt (Eval) [3] 42 27 44 1.6 667 ✅
HowToChange (Train) 122 20 318 15.9 36,075

HowToChange (Eval) 134 20 409 20.5 5,424 ✅

HowToChange Dataset

Obj = object, ST = state transitionFeatures:
● Scale jump in the number of OSCs (#OSC) and videos (#Video)
● Wide variety of objects per state transition (#Obj per ST) 

The first open-world benchmark for video OSC localization

Quantitative Results
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Video Object State Change (OSC) 

Motivation

See our website 
for data, code & 
qualitative 
videos →

Ground truth annotation distribution
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Top-1 frame predictions (novel OSCs)

Qualitative Results

Top-1 frame predictions (known OSCs)
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(a) Leverage ASR transcriptions and LLM for automatic OSC mining from instructional videos; 
(b) Employ OSC textual descriptions with VLM for pseudo label generation; 
(c) Video OSC model for object-agnostic state predictions (shared state vocabulary, temporal modeling, object-centric features); 
(d) Test with open-world formulation, evaluating performance on both known and novel OSCs. 

Framework Overview

Qualitative Results


