TEXAS OO Meta

The University of Texas at Austin

Video Object State Change (OSC)

Objective: temporally localize an object’s three
states (initial, transitioning and end) from a video
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Motivation

e OSCs naturally exhibit a long-tail. Certain OSCs, such as
melting butter, are frequently shown in videos while others like
melting jaggery might be rarely seen.

e Prior works assume a closed vocabulary, limited to identifying
state changes for objects observed during training.
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Quantitative Results
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Learning Object State Change in Videos: An Open-World Perspective
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Qualitatiye Results
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Framework Overview

(a) Mining for OSC examples (b) Pseudo Label Generation

|ASR transcription]

you're going to use some
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object features
(d) Model Testing

(c) Model Training

(a) Leverage ASR transcriptions and LLM for automatic OSC mining from instructional videos;

(b) Employ OSC textual descriptions with VLM for pseudo label generation;

(c) Video OSC model for object-agnostic state predictions (shared state vocabulary, temporal modeling, object-centric features);
(d) Test with open-world formulation, evaluating performance on both known and novel OSCs.
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HowToChange Dataset

The first open-world benchmark for video OSC localization
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Alayrac et al. 5 6 7 1.2 630
TaskFluent !4 25 14 32 2.3 809
Changelt (Train) ' 42 27 44 1.6 34,428
Changelt (Eval) ! 42 27 44 1.6 667

HowToChange (Train) 122 20 318 15.9 36,075

HowToChange (Eval) 134 20 409 20.5 5,424

Features: Obj = object, ST = state transition

e Scale jump in the number of OSCs (#OSC) and videos (#Video)
e \Wide variety of objects per state transition (#Obj per ST)

Ground truth annotation distribution

Annotation Distribution by State Transition Type Annotation Distribution by Object Type
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Qualitative Results
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