

Video Object State Change (OSC)

Objective: temporally localize an object's three states (initial, transitioning and end) from a video

Motivation

- OSCs naturally exhibit a long-tail. Certain OSCs, such as melting butter, are frequently shown in videos while others like melting jaggery might be rarely seen.
- Prior works assume a **closed** vocabulary, limited to identifying state changes for objects observed during training.

Quantitative Results

Learning Object State Change in Videos: An Open-World Perspective

Zihui (Sherry) Xue^{1,2} Kumar Ashutosh^{1,2} Kristen Grauman^{1,2} ¹UT Austin ²FAIR, Meta

Qualitative Results

- (c) Video OSC model for object-agnostic state predictions (shared state vocabulary, temporal modeling, object-centric features);
- (d) Test with open-world formulation, evaluating performance on both known and novel OSCs.

See our website for data, code & qualitative videos \rightarrow

HowToChange Dataset

	#Obj	#ST	#OSC	#Obj per ST	#Video	GT Label?
rac et al. ^[1]	5	6	7	1.2	630	
Fluent ^[2]	25	14	32	2.3	809	
ngelt (Train) ^[3]	42	27	44	1.6	34,428	
ngelt (Eval) ^[3]	42	27	44	1.6	667	
ToChange (Train)	122	20	318	15.9	36,075	
ToChange (Eval)	134	20	409	20.5	5,424	

[4] Soucek et al., Multi-Task Learning of Object State Changes from Uncurated Videos, arXiv 22.

[5] Radford et al., Learning transferable visual models from natural language supervision, ICML 21.

[6] Xu et al., VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 21.

[7] Wang et al., InternVideo: General Video Foundation Models via Generative and Discriminative Learning, arXiv 22