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1. Introduction

The goal of video summarization is to produce a compact
visual summary that encapsulates the key components of a
video. Its main value is in turning hours of video into a
short summary that can be interpreted by a human viewer
in a matter of seconds.

Existing methods extract keyframes [14, 15, 6], create
montages of still images [1, 3], or generate compact dy-
namic summaries [11]. Despite promising results, they as-
sume a static background or rely on low-level appearance
and motion cues to produce the final summary. However,
in many interesting settings, such as egocentric or YouTube
style videos, the background is moving and changing.Fur-
thermore,existing methods do not performobject-driven
summarization and are indifferent to the impact that each
object has on generating the “story” of the video.

In this work, we are interested in creating object-driven
summaries for videos captured from a wearable camera. An
egocentric video offers a first-person view of the world that
cannot be captured from environmental cameras. For ex-
ample, we can often see the camera wearer’s hands, or find
the object of interest centered in the frame. Essentially, a
wearable camera focuses on the user’s activities, social in-
teractions, and interests. We aim to exploit these properties
for egocentric video summarization.

Good summaries for egocentric data would have wide
potential uses: They could facilitate police officers in re-
viewing important evidence, suspects, and witnesses, or
aid patients with memory problems to remember specific
events, objects, and people [7]. Furthermore, the ego-
centric view translates naturally to robotics applications—
suggesting, for example, that a robot could summarize what
it encounters while navigating unexplored territory, for later
human viewing.

Motivated by these problems, we propose an approach
that learns category-independentimportancecues designed
explicitly to target thekey objects and peoplein the video.
The main idea is to leverage novel egocentric and high-level
saliency features to train a model that can predict important
regions in the video, and then to produce a concise visual
summary that is driven by those regions (see Fig. 1). By
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Figure 1. Our system takes as input an unannotated egocentric
video, and produces a compact storyboard visual summary that
focuses on the key people and objects in the video.

learning to predict important regions, we can focus the vi-
sual summary on the main people and objects, and ignore
irrelevant or redundant information.

We emphasize that we do not aim to predict importance
for any specific category (e.g., cars). Instead, we learn a
general model that can predict the importance of anyob-
ject instance, irrespective of its category. This category-
independence avoids the need to train importance predictors
specific to a given camera wearer, and allows the system to
recognize as important something it has never seen before.
In addition, it means that objects from the same category
can be predicted to be (un)important depending on their role
in the story of the video.

While recent work on egocentric visual analysis has
shown many interesting applications (e.g., activity recog-
nition [5], object recognition [12], and action cluster-
ing [8]), to our knowledge, we are the first to per-
form visual summarization for egocentric data. Please
see our full CVPR 2012 paper and project page
(http://vision.cs.utexas.edu/projects/egocentric/) for more
algorithmic details and results.

2. Approach

Our goal is to create a storyboard summary of a person’s
day that is driven by the important people and objects. We
defineimportancein the scope of egocentric video: impor-
tant things are those with which the camera wearer has sig-
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Figure 2. Illustration of our egocentric features.

nificant interaction.

Egocentric video data collection and annotation We
use the Looxcie wearable camera, which is worn around the
ear and captures video at 15 fps at 320 x 480 resolution. We
collected 10 videos from four subjects, each of three to five
hours in length, for a total of 37 hours of video. The videos
capture a variety of activities such as eating, shopping, at-
tending a lecture, driving, and cooking.

To train the importance predictor, we crowd-source large
amounts of annotations using Amazon’s Mechanical Turk
(MTurk). For egocentric videos, the object must be seen
in the context of the camera wearer’s activity to properly
gauge its importance.

We carefully design two annotation tasks to capture this
aspect. In the first task, we ask workers to watch a three
minute accelerated video and to describe in text what they
perceive to be essential people or objects necessary to cre-
ate a summary. In the second task, we display uniformly
sampled frames from the video and their corresponding text
descriptionsobtained from the first task, and ask workers
to draw polygons around any described person or object.
This two-step process helps us avoid bias: a single annota-
tor asked to complete both tasks at once may be biased to
pick easier things to annotate rather than those s/he finds to
be most important.For a 3-5 hour video, we obtain roughly
35 text descriptions and 700 object segmentations.

Learning and predicting region importance Given a
video, we first generate candidate regions for each frame.
For each region, we compute a set of candidate features that
could be useful to describe its importance:

Egocentric features Fig. 2 illustrates the three proposed
egocentric features. To modelinteraction, we compute the
L2-distance of the region’s centroid to the closest detected
hand. To modelgaze, we compute the L2-distance of the
region’s centroid to the frame center. To modelfrequency,
we record the number of times an object instance is detected
within a short temporal segment of the video.

Object features We include three high-level saliency
cues. To modelobject-like appearance, we use the learned
region ranking function of [2]. It reflects Gestalt cues in-
dicative ofanyobject and is useful for identifying full ob-
ject segments, as opposed to fragments. To modelobject-
like motion, we use the feature defined in [9]. It looks at the
difference in motion patterns of a region relative to its clos-

est surrounding regions. It is useful for selecting object-like
regions that “stand-out” from their surroundings. To model
the likelihood of a person’s face, we compute the max-
imum overlap score between the region and any detected
frontal face in the frame.

Region features Finally, we compute the region’s
size, centroid, bounding box centroid, bounding box
width, andbounding box height. They reflect category-
independent importance cues and are blind to the region’s
appearance or motion.

We next train a model that can learn and predict a re-
gion’s degreeof importance. While the features defined
above can be individually meaningful, we expect signifi-
cant interactions between the features. For example, a re-
gion that is near the camera wearer’s hand might be impor-
tant only if it is also object-like in appearance. Therefore,
we train a linear regression model with pair-wise interaction
terms to predict a regionr’s importance score:

I(r) = β0 +

N∑

i=1

βixi(r) +

N∑

i=1

N∑

j=i+1

βi,jxi(r)xj(r), (1)

where theβ’s are the learned parameters,xi(r) is the ith
feature value, andN = 14 is the total number of features.

For training, we define a regionr’s target importance
score by its maximum overlap|GT∩r|

|GT∪r| with any ground-truth
regionGT in a training video. We solve for theβ’s using
least-squares. For testing, our model takes as input a region
r’s features and predicts its importance scoreI(r).

Generating a storyboard summary We first partition
the video temporally into events. We cluster scenes in
such a way that frames with similar global appearance can
be grouped together even when there are a few unrelated
frames (“gaps”) between them. Specifically, we perform
complete-link agglomerative clustering with a distance ma-
trix that reflects color similarity between each pair of frames
weighted by temporal proximity.

Given an event, we first score each region in each frame
using our regressor. We take the highest-scored regions and
group instances of the same person or object together using
a factorization approach [10]. For each group, we select the
region with the highest score as its representative.

Finally, we create a storyboard visual summary of the
video. We display the event boundaries and frames of the
selected important people and objects (see Fig. 3). We au-
tomatically adjust thecompactnessof the summary with se-
lection criteria on the region importance scores and number
of events, as we illustrate in our results.

3. Results

We analyze (1) the performance of our method’s impor-
tant region prediction, and (2) the accuracy and compact-
ness of our storyboard summaries. For evaluation, we use
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Figure 3. Our summary (a) vs. uniform sampling (b). Our summary focuses on the important people and objects.
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Figure 4. (left) Precision-Recall for important object prediction
across all splits, and example selected regions/frames. Numbers
in the legends denote average precision. (right) Comparison to
alternative summarization strategies, in terms of important object
recall rate as a function of summary compactness.

four data splits: for each split we train with data from three
users and test on one video from the remaining user. For
efficiency, we process every 15th frame.

Important region prediction accuracy We first evaluate
our method’s ability to predict important regions, compared
to (1) the object-like score of [2], (2) the object-like score
of [4], and (3) the bottom-up saliency detector of [13]. The
first two are learned functions that predict a region’s like-
lihood of overlapping a true object, whereas the low-level
detector aims to find regions that “stand-out”.

Fig. 4 (left) shows precision-recall curves on all test re-
gions across all train/test splits. Our approach predicts im-
portant regions significantly better than all three existing
methods. The two high-level methods can successfully find
prominent object-like regions, and so they noticeably out-
perform the low-level saliency detector. However, by focus-
ing on detectinganyprominent object, unlike our approach
they are unable to distinguish those that may be important
to a camera wearer.

Egocentric video summarization accuracy Next we
evaluate our method’s summarization results. We compare
against two baselines: (1) uniform keyframe sampling, and
(2) event-based adaptive keyframe sampling. The latter
computes events using the same procedure as our method,
and then divides its keyframes evenly across events. These
are natural baselines modeled after classic keyframe and
event detection methods [14, 15], and both select keyframes
that are “spread-out” across the video.

Fig. 4 (right) shows an example result. We plot% of im-
portant objects foundas a function of# of frames in the
summary, in order to analyze both the recall rate of the
important objects as well as the compactness of the sum-

maries. To vary compactness, our method varies both its
selection criterion onI(r) and the number of events, for 12
summaries in total. We create summaries for the baselines
with the same number of frames as those 12.

Overall, our summaries include more important peo-
ple/objects with fewer frames. For example, our method
finds 54% of important objects in 19 frames, whereas the
uniform keyframe method requires 27 frames. Fig. 3 shows
an example full summary from our method (a) and the uni-
form baseline (b).Our summary more clearly reveals the
story:selecting an item at the supermarket→ driving home
→ cooking→ eating and watching tv.

User studies to evaluate summaries To quantify theper-
ceivedquality of our summaries, we ask the camera wear-
ers to compare our method’s summaries to those generated
by uniform keyframe sampling (event-based sampling per-
forms similarly). In short, out of 16 total comparisons, our
summaries were found to be better 68.75% of the time.
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