

An Exploration of Embodied Visual Exploration

Project page: http://vision.cs.utexas.edu/projects/exploring-exploration

Santhosh Kumar Ramakrishnan^{1,3}

¹ The University of Texas at Austin

Dinesh Jayaraman^{2,3}

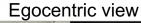
² University of Pennsylvania

Kristen Grauman^{1,3}

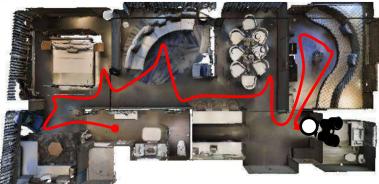
³ Facebook Al Research

Embodied visual exploration

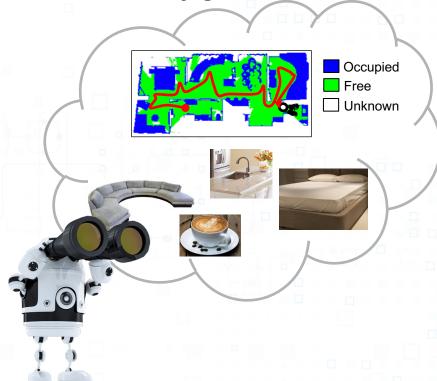
Egocentric view



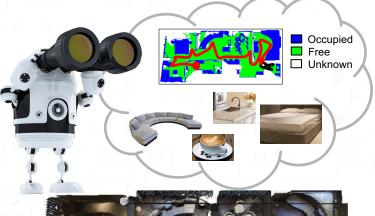
3D environment

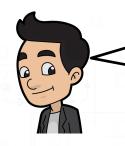


Embodied exploration



3D environment

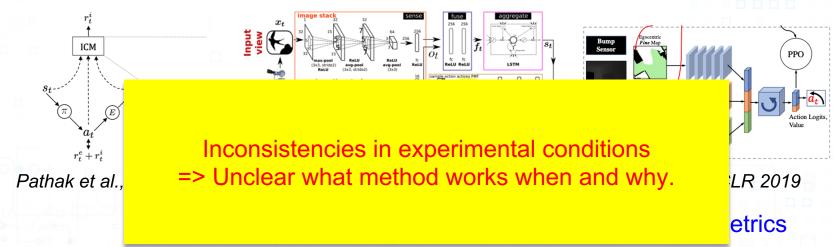

Automatically gather information


Embodied exploration

Automatically gather information

Solve downstream tasks

Please get me coffee in the living room


Key questions

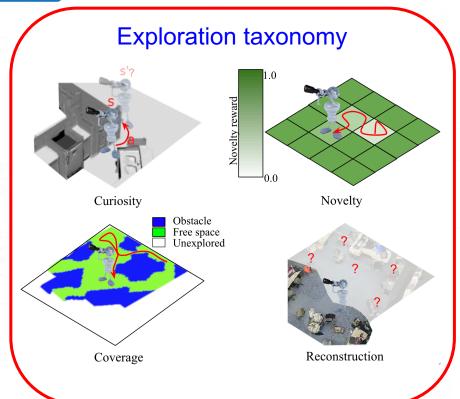
- Is the spatial exploration problem solved?
- How well do recent approaches compare with each other?
- What are the strengths and weaknesses of different approaches?

Lack of standardized experimental conditions

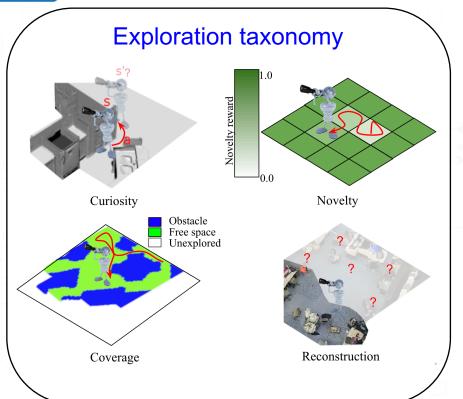
Architectures, algorithms

GIBSON

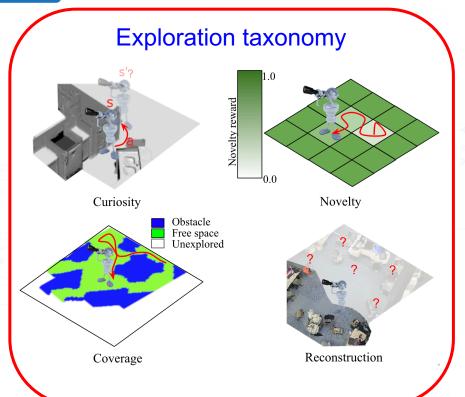
Matterport3D



VizDoom



- area covered
- objects covered
- reconstruction
- navigation
- overcoming sparse rewards

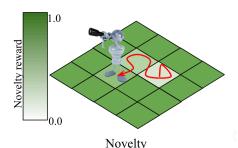

Exploration study framework

High-quality 3D environments

State-of-the-art policy architecture

Diverse evaluation metrics

Exploration study framework


High-quality 3D environments

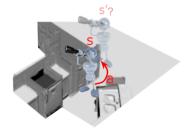
State-of-the-art policy architecture

Diverse evaluation metrics

Exploration taxonomy - novelty

Rewards visiting states that are infrequently visited

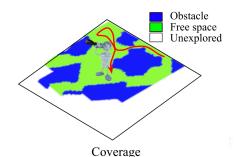
$$r(s) \propto \frac{1}{\sqrt{n(s)}}$$
 $n(s) = \text{number of times state } s \text{ has been visited}$



Discretize the world into grids that represent states

Unifying count-based exploration and intrinsic motivation, Bellemare et al, NeurIPS 2016 # exploration: A study of count-based exploration for deep RL, Tang et al., NeurIPS 2017 Episodic curiosity through reachability, Savinov et al., ICLR 2019

Exploration taxonomy - curiosity


Curiosity

- Learns a forward dynamics prediction model
- Agent is rewarded for visiting states where this model is poor at prediction, i.e., do things you are curious about

$$r(s) \propto ||s' - f(a,s)||^2$$

Exploration taxonomy - coverage

Maximize the amount of area seen during exploration (A)

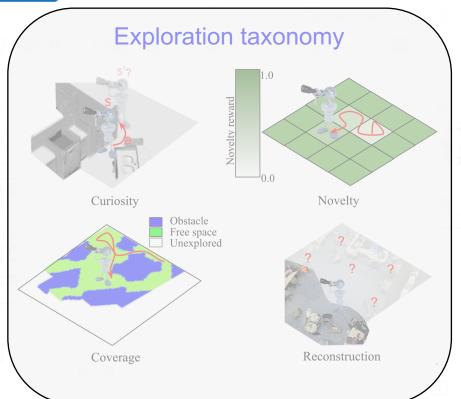
$$r(s) = \Delta A$$

Exploration in model-based reinforcement learning by empirically estimating learning process, Lopes et al., NeurIPS 2012

Exploration taxonomy - reconstruction

Actively gather information to reconstruct the entire environment

Reconstruction



$$r(s) \propto -\Delta \text{MSE}$$

Learning to Look Around: Intelligently Exploring Unseen Environments for Unknown Tasks, Jayaraman & Grauman, CVPR 2018

Sidekick Policy Learning for Active Visual Exploration, Ramakrishnan & Grauman, ECCV 2018 Emergence of Exploratory Behaviors through Active Observation Completion, Ramakrishnan et al., Science Robotics 2019

Exploration study framework

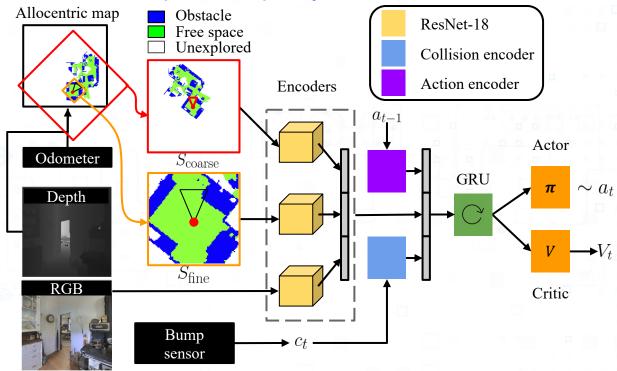
High-quality 3D environments

State-of-the-art policy architecture


Diverse evaluation metrics

Exploration study framework

Photorealistic 3D environments


Active Vision Dataset [1]

Exploration study framework

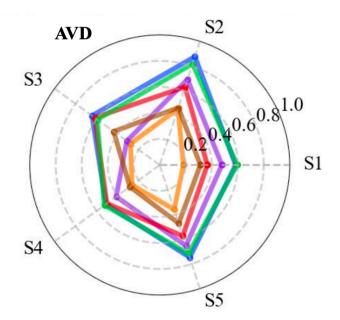
Exploration policy architecture

Exploration study framework

Evaluation metrics suite

Visitation metrics

- Area covered
- Objects covered


Downstream task transfer

- Pose estimation
- Concept reconstruction
- Navigation

Experiments

Perfect odometry assumption

S1 - Navigation

S4 - Localization

S2 - Mapping

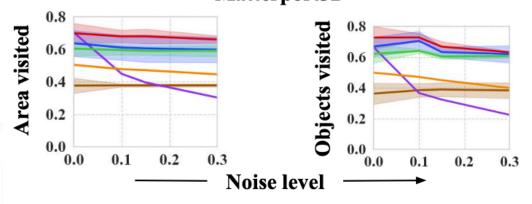
S5 - Reconstruction

S3 - Object discovery

- imitation

coverage
curiosity

novelty


reconstruction

frontier

Experiments

Impact of noisy odometry on exploration Matterport3D

Conclusions

- Taxonomy of exploration algorithms
- Exploration study benchmark
 - Photorealistic 3D environments
 - High-performance exploration architecture
 - Diverse evaluation metrics
- Study reveals strengths and weaknesses of existing approaches.

An Exploration of Embodied Visual Exploration

Project page: http://vision.cs.utexas.edu/projects/exploring-exploration Code: https://github.com/facebookresearch/exploring exploration

Santhosh Kumar Ramakrishnan^{1,3}

¹ The University of Texas at Austin

Dinesh Jayaraman^{2,3}

² University of Pennsylvania

Kristen Grauman^{1,3}

³ Facebook Al Research