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ON-DEMAND LEARNING ALGORITHM

Key ldea: Let the system guide its own learning towards the right proportion of sub-tasks per difficulty
level by creating a feedback mechanism to self-generate instances where they are needed most.

BACKGROUND PROBLEM FORMULATION
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Objective: Train an image restoration system to
succeed across a spectrum of difficulty levels.

On-demand learning:

N sub-tasks of increasing difficulty: 771,75,...,Ty
# of training examples for sub-task 7; per batch: B;
Batch Size: B

Algorithm 1: On-Demand Learning
Initialization: B; = B/N
while time budget has not run out do

Other training paradigms:
-> Rigid joint: simply pool training instances
across difficulty levels
=> Curriculum learning: order training samples
from easy to hard
Algorithm 2: Staged Curriculum Learning

e real images: {R;}

e corrupted images: {C;}

e a general encoder-decoder deep network f
with weights w

e oObjective:

W =argmin) ||R;— f(C;,W)|[3
W l

Initialization: B =B, B, ny=0,i=1

severity of noise :
while i <=N do

_ : : : : continue training for one epoch and snapshot; train using 2 time budget;
Image corruption exists in various degrees of severity! ’ if end of epoch then i=i+1;
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(a) fixated model for image inpainting task (c) fixated model for image deblurring task

EXPERIMENT RESULTS

Comparison of overall performance:

excel at =

Comparison to existing inpainting and denoising methods:
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(b) fixated model for pixel interpolation task (d) fixated model for image denoising task Deblurring Interpolation Inpainting Denoising Deblum'ng Interpolation Inpainting Denoising 1.2 L.oss PSNR 1.2 L.oss PSNR
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e Pixel Interpolation: percentage of deleted pixels 0%-15%, 15%-30%, 30%-45%, 45%-60%, 60%-75%
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Observation: Our algorithm performs well over the spectrum of difficulty,
whereas fixated models perform well at only a certain level of corruption.

Observation: By automatically guiding the balance among sub-tasks, on-demand learning
successftully addresses the fixation problem, and obtains the best all-around performance.
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Observation: Our image denoising system consistently
performs well on all noise levels, yet we do not assume
knowledge of noise level during testing.




