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The supplementary materials consist of:

A. Pseudocode for our on-demand learning algorithm.

B. Details of our network architecture.

C. Details of the fixated models setup.

D. Fixated models vs. All-rounder on SUN397 and image
denoising.

E. Overall performance of our image denoising model.

F. Applications of our image inpainter to real images.

G. Qualitative results for interpolation and denoising.

H. Image denoising qualitative results on DB11.

A. On-Demand Learning Algorithm
We present the pseudocode of our on-demand learning

algorithm as follows:

Algorithm 1: On-Demand Learning
N sub-tasks of increasing difficulty: T1,T2, . . . ,TN
# of training examples for sub-task Ti per batch: Bi
Batch Size: B
Initialization: Bi = B/N
while not converge do

continue training for one epoch and snapshot;
if end of epoch then

i = 1;
for i≤ N do

validate snapshot model on sub-task Ti;
get mean PSNR Pi;

end
update Bi =

1/Pi
∑

N
i=1 1/Pi

·B;

end
end

B. Deep Learning Network Architecture

Fig. 1 shows the complete network architecture used for
all tasks to implement our on-demand learning idea. Our
image restoration network is a symmetric encoder-decoder
pipeline. The encoder takes a corrupted image of size
64× 64 as input and encodes it in the latent feature space.
The decoder takes the feature representation and outputs the
restored image. Our encoder and decoder are connected
through a channel-wise fully-connected layer.

Specifically, for our encoder, we use four convolutional
layers. Following similar design choices in DCGAN [12],
we put a batch normalization layer [7] after each convolu-
tional layer to accelerate training and stabilize learning. The
leaky rectified linear unit (LeakyReLU) activation [10, 15]
is used in all layers in the encoder.

The four convolutional layers in the encoder only con-
nect all the feature maps together, but there are no direct
connections among different locations within each specific
feature map. Fully-connected layers are usually used to
handle this information propagation in present successful
network architectures [8, 14]. In our network, the latent fea-
ture dimension is 4×4×512 = 8192 for both encoder and
decoder. Fully-connecting our encoder and decoder will
increase the number of parameters explosively. To more
efficiently train our network and demonstrate our concept,
we use a channel-wise fully-connected layer to connect the
encoder and decoder, as in [11]. The channel-wise fully-
connected layer is designed to only propagate information
within activations of each feature map. In our case, each
4×4 feature map in the encoder side is fully-connected with
each 4×4 feature map in the decoder side. This largely re-
duces the number of parameters in our network and accel-
erates training significantly.

The decoder consists of four up-convolutional layers [9,
5, 17], each of which is followed by a rectified linear unit
(ReLU) activation except the output layer. We use the Tanh
function in the output layer, and the output is of the same
size as the input image. The series of up-convolutions and
non-linearities conducts a non-linear weighted upsampling
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of the feature produced by the encoder and generates a
higher resolution image of our target size (64×64).

C. Details of the Fixated Models Setup

We followed the current literature to train deep networks
to target a certain degree of corruption for four tasks—
image inpainting, pixel interpolation, image deblurring and
image denoising—and demonstrate how severe the fixation
problem is. We show the qualitative examples of fixated
models for pixel interpolation and image denoising tasks in
Fig. 2 as a supplement to Fig. 2 in the main paper.

Specifically, for the image inpainting task, we follow
similar settings in [11, 16] and train a model to inpaint a
large central missing block of size 32×32. During testing,
the resulting model can inpaint the central block of the same
size at the same location very well (first row in Fig. 2-a in
the main paper). However, if we remove a block that is
slightly shifted away from the central region, or remove a
much smaller block, the model fails to inpaint satisfactorily
(second row in Fig. 2-a in the main paper). Following [11],
we replace pixels in removed blocks with the average pixel
values in training images (which tend to look grey). We
can observe that grey areas are retained in regions outside
of the central block in the failure cases, which is a strong
indicator that the trained network severely overfits to the
central location.

For the pixel interpolation task, we train a model only
based on heavily corrupted images (80% of random pixels
deleted), following [16]. During testing, if we use the ob-
tained model to restore images of the same corruption level,
the images are recovered very well (first row in Fig. 2-a).
However, if we test the same model on lightly corrupted
(easier) images, the model performs very poorly (second
row in Fig. 2-a). The trained network either produces com-
mon artifacts of deep networks like the checkerboard arti-
facts, or a much blurrier low-quality restored image.

For the image deblurring task, results are similar. We
train a model only based on heavily blurred images (σx =
σy = 5). The trained model can successfully restore very
blurry images (same blurry level as training examples), but
is unable to restore images that are much less blurry. In the
second row of Fig.2-b in the main paper, we can observe
some ripple artifacts, which may be similar to the shape of
the Gaussian kernel function that the network overfits to.

For the image denoising task, we train a model only
based on lightly corrupted images (σ = 10 for AWG noise).
During testing, the model can successfully restore images of
the same level of noise (first row in Fig. 2-b). However, it
fails catastrophically when we increase the severity of noise
on test images (second row in Fig. 2-b).

CelebA Dataset SUN397 Dataset
L2 Loss PSNR L2 Loss PSNR

Rigid Joint Learning 5.90 26.38 dB 7.56 25.69 dB
Cumulative Curriculum 6.10 26.31 dB 7.73 25.60 dB

Cumulative Anti-Curriculum 5.90 26.35 dB 7.57 25.66 dB
Staged Curriculum 7.10 24.74 dB 9.11 23.87 dB

Staged Anti-Curriculum 53.1 21.19 dB 55.5 19.66 dB
Hard Mining 6.53 25.10 dB 8.52 24.10 dB

On-Demand Learning 5.79 26.48 dB 7.49 25.80 dB

Table 1. Summary of the overall performance of all algorithms for
image denoising on CelebA and SUN397. This table is a supple-
ment to Table 1 in the main paper, where due to space constraints
we could show only the results for three tasks. Overall perfor-
mance is measured by the mean L2 loss (in ‰, lower is better)
and mean PSNR (higher is better) averaged over all sub-tasks.

D. Fixated Models vs. All-Rounder on SUN397
and Image Denoising

We show the complete comparison of our algorithm with
fixated models on CelebA and SUN397 for all of the four
tasks in Fig. 4, as a supplement to Fig. 4 in the main pa-
per, where due to space constraints we could show only the
CelebA results for three tasks. Results on SUN397 and im-
age denoising are similar. Fixated models overfit to a spe-
cific corruption level (easy or hard). It succeeds beautifully
for images within its specialty, but performs poorly when
forced to attempt instances outside its specialty. In contrast,
models trained using our algorithm perform well across the
whole spectrum of difficulty. For inpainting, the fixated
models even perform poorly at the size they specialize in,
because they also overfit to the central location, thus cannot
inpaint satisfactorily at random locations at test time.

E. Overall Performance of Our Image Denois-
ing Model

In Table 1, we report average L2 loss and PSNR over all
test images for the image denoising task, as a supplement
to Table 1 in the main paper, where due to space constraints
we could show only the results for three tasks. The results
for image denoising are similar. Our proposed algorithm
consistently outperforms all the well-designed baselines.

F. Applications of Our Image Inpainter

We show some applications of our image inpainter to real
world scenarios in this section. Fig. 3 shows some examples
of using our image inpainter to do scar removal on human
face images, and object removal on natural scene images.
For each example, the left image is the target real world im-
age. Our inpainter can successfully remove scars on human
faces, and selectively remove objects in photographs.
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Figure 1. Network architecture for our image restoration framework. Our image restoration framework is an encoder-decoder pipeline
with the encoder and decoder connected by a channel-wise fully-connected layer. The illustration is for image inpainting task. The same
network architecture also holds for the other three tasks: pixel interpolation, image deblurring, and image denoising.
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Figure 2. Qualitative examples of fixated models for pixel interpo-
lation and image denoising tasks. The models overfit to a certain
degree of corruption. They perform extremely well at that level of
corruption, yet fail to produce satisfactory restoration results even
for much easier sub-tasks.

Figure 3. Real applications of our image inpainter. For each ex-
ample, the left image is the target real image, and the right images
are images processed by our image inpainter. Our inpainter can
successfully remove scars on human faces, and selectively remove
objects (trees in the last example) in photographs.

G. Qualitative results for interpolation and de-
noising

We show the qualitative examples output by our method
for pixel interpolation and image denoising tasks in Fig. 5 as

a supplement to Fig. 5 in the main paper. For each task, the
first and second rows show test examples from CelebA and
SUN397, respectively. For each quintuple, the first column
shows the ground-truth image from the original dataset; the
second column shows the corrupted image; the third col-
umn shows the restored image using the model trained using
rigid joint learning; the fourth column shows the restored
image using a fixated model; the last column shows the
restored image using the all-rounder model trained by our
algorithm. The fixated models can only perform well at a
particular level of corruption. Models trained using our pro-
posed on-demand approach are all-rounders that perform
well on images of different degrees of corruption. With a
single model, we restore corrupted images with different
percentage of deleted pixels and denoise images of various
noise levels.

H. Image Denoising Results on DB11

This section serves as a supplement to Section 6.7 in the
main paper, where due to space constraints we could not de-
scribe the details of the setup of our image denoising system
and present qualitative results.

We first describe the details of our image denoising sys-
tem. Because the input of our network is of size 64× 64,
given a larger corrupted image C, we first decompose the
image into overlapping patches of size 64× 64 and use a
sliding-window approach to denoise each patch separately
(stride 3 pixels), then average outputs at overlapping pixels.

We then present the qualitative results. Particularly, we
first compare the denoising results of image Lena across
the spectrum of difficulty in Fig. 6. We show image de-
noising results at four different corruption levels (σ =
10,25,50,75). For each column, the first row shows the
original real image; the second row shows the image cor-
rupted by AWG noise with the specified sigma value; the
third and fourth rows show the restoration results using
KSVD [1] and BM3D [4] correspondingly assuming σ = 25
for the test image; the fifth row shows the denoising re-



Figure 4. Our on-demand learning algorithm vs. fixated models for all the four tasks on CelebA and SUN397. This figure is a supplement
to Fig. 4 in the main paper, where due to space constraints we could show only the results for three task on CelebA. Models trained using
our algorithm perform well over the spectrum of difficulty, while fixated models perform well at only a certain level of corruption.
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Figure 5. Qualitative examples of pixel interpolation and image denoising. For both tasks, the first row shows testing examples of CelebA
dataset, and the second row shows examples of SUN397 dataset. For each quintuple, Column 1: Original image from the dataset; Column
2: Corrupted image; Column 3: Restored image using rigid joint training; Column 4: Restored image using a fixated model; Column 5:
Restored image using our method. Models trained using our method can handle arbitrary levels of distortions, while the fixated models can
only perform well at a particular level of corruption.



sult of the MLP [2] model trained for σ = 251; the sixth
row shows the restoration result using WCNN [6] assum-
ing σ = 25 for the test image; the seventh and eighth rows
show the restoration results of the CSF [13] model and the
TNRG [3] model trained for σ = 2523 correspondingly; the
last row shows the denoising result of the model trained
using our on-demand learning algorithm. K-SVD, BM3D
and WCNN only work well when given the correct sigma
value at test time, which is impractical because it is dif-
ficult to gauge the corruption level in a novel image and
decide which sigma value to use. The MLP, CSF, TNRG
models trained for σ = 25 are fixated models that perform
well only at that specific level of corruption. However, the
model trained using our proposed method performs well on
all four corruption levels, and it is a single model without
knowing the correct sigma value of corrupted images at test
time. Finally, in the end we append the image denoising
results using our denoising system of all the 11 images at
noisy level σ = 25.

1We use the authors publicly available code (http://people.
tuebingen.mpg.de/burger/neural_denoising/) in which
the system is trained for σ = 25. The authors also propose a variant of
the system trained on various corruption levels with σ given as input to the
network, and it requires the σ value to be available at test time. This ver-
sion is not available in the public code, and it is also unclear how the true
σ value would be available for a novel image with unknown distortions.

2We use the authors publicly available code (https://github.
com/uschmidt83/shrinkage-fields/) and use the model
trained for σ = 25.

3We use the authors publicly available code (http:
//gpu4vision.icg.tugraz.at/index.php?content=
downloads.php) and use the model trained for σ = 25.

http://people.tuebingen.mpg.de/burger/neural_denoising/
http://people.tuebingen.mpg.de/burger/neural_denoising/
https://github.com/uschmidt83/shrinkage-fields/
https://github.com/uschmidt83/shrinkage-fields/
http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
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Figure 6. Denoising results of image Lena at various corruption levels. All methods are applied as a single model to all test images.
KSVD [1], BM3D [4], MLP [2], WCNN [6], CSF [13] and TNRG [3] perform well only at a particular level of corruption, while the image
denoising model trained using our method performs well at all corruption levels.
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clean (name: Boat) noisy (PSNR: 20.29 dB) ours (PSNR: 30.11 dB)

clean (name: C.man) noisy (PSNR: 20.55 dB) ours (PSNR: 29.41 dB)

clean (name: Couple) noisy (PSNR: 20.28 dB) ours (PSNR: 30.04 dB)

clean (name: F.print) noisy (PSNR: 20.26 dB) ours (PSNR: 27.81 dB)

clean (name: Hill) noisy (PSNR: 20.28 dB) ours (PSNR: 30.03 dB)

clean (name: House) noisy (PSNR: 20.22 dB) ours (PSNR: 33.14 dB)

clean (name: Lena) noisy (PSNR: 20.24 dB) ours (PSNR: 32.44 dB)

clean (name: Man) noisy (PSNR: 20.24 dB) ours (PSNR: 29.92 dB)

clean (name: Montage) noisy (PSNR: 20.77 dB) ours (PSNR: 32.34 dB)

clean (name: Peppers) noisy (PSNR: 20.31 dB) ours (PSNR: 30.29 dB)
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