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1 Sanity Check Baseline Results: Averaging Images per

Category

As described in the text of the main paper, this baseline is a sanity check to assure

the difficulty of generating prototypical shapes. We manually partition the images into

the “ideal” clusters, so that each cluster has 100% purity, and then simply average

the aligned edge images, using the confidence weights given by the Pb detector [1].

The sanity check baseline helps to indicate the contribution made by our fragment

weighting and prototype formation.

Fig. 1 (a-c) show the prototypical shapes formed by the baseline on the Caltech

images, ETHZ bounding box regions, and ETHZ expanded regions, respectively. For

the Caltech images, the baseline clearly cannot discover the shape agreement, even

though the input clusters were perfect. The baseline does pretty well to discover shape

on the ETHZ bounding box regions, which is expected, since those regions are scale-

normalized and aligned. The baseline performs worse on the ETHZ expanded regions

due to clutter in the images; it discovers shapes with some accuracy for only a couple

of categories (Applelogos and Bottles). (To compare against our method’s prototypical

shapes, see Fig. 6 (b) (Caltech) and Fig. 7 (b,e) (ETHZ bounding box and expanded,

respectively) in the main paper.)

These results confirm that even with perfect clusters, simply stacking the edgemaps

will not produce accurate shape models. Our method clearly outperforms this baseline

for most of the generated shapes (a few are comparable), even without the advantage

of starting with perfect clusters.

2 Description of LabelMe Test Set

To form the LabelMe test set used in Section 4.3 of the main paper, we downloaded

images for each of the Caltech categories with the requirements that (1) there be at least

one instance of an annotated object, and (2) there be at least 10K pixels on the object of
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(a) Caltech sanity check baseline proto-

type shapes

(b) ETHZ (bbox) sanity check

baseline prototype shapes

(c) ETHZ (expanded) san-

ity check baseline prototype

shapes

Figure 1: Prototypical shapes found by the sanity check baseline on the (a) Caltech

images, (b) ETHZ bounding box regions, and (c) ETHZ expanded regions. The right

images are thresholded images of the left. (Best viewed in color.)

interest. The second requirement is to ensure that edges will be detected on the object

of interest. To this end, we created a testset for the Faces (F), Airplanes (A), Cars Rear

(C), and Motorbikes (M) categories, each having 15 images. (LabelMe’s images for

the Watches and Ketches categories did not meet the requirements.)

We perform object detection by matching our prototypical shapes to the test images

using a simple modified chamfer distance: we give a penalty to each edgel in the shape

mask that is proportional to their weights (vote counts). For this detection task, we

are given an image containing an instance of the object, and we have to determine its

precise location. To account for scale differences between the models and objects in

test images, we search at multiple scales, scaling each test image from half to twice its

original size, in increments of 0.1.

We search for a single instance of the object by choosing the region that corre-

sponds to the lowest symmetric chamfer distance. Fig. 2 and Fig. 3 show correct and

incorrect detection examples, respectively. (The main paper summarizes the quantita-

tive results.)

Our discovered prototypical shapes lead to some accurate detections even in com-

plex images taken from another dataset. The incorrect detections are mainly due to the

limitations of the chamfer matching: it has trouble producing accurate matches when

the image has large amounts of clutter, when the object of interest is rotated, and/or

2



when there are not enough edges detected on the object of interest (due to shadows or

bright illumination).

3 Complexity Analysis

We analyze the computational complexity of our method’s matching algorithm. Let P

and E be the maximum number of patch descriptors and extracted edge fragments in

each image, respectively. Let S be the spatial extent (height and width) of the local

region in which each fragment in one image can shift to find its best corresponding

edge fragment in another.

Computing Dpatch(X, Y ) between feature sets X and Y requires O(P 2) L2 dis-

tance computations. To efficiently compute the shape distances, we pre-compute the

distance transform and argument distance transform (both of which can be computed

in linear time) on the edgemaps of each image. Computing the coarse shape simi-

larity, Dscd(X, Y ), requires O(P 2) dot-products between matching features and the

shifted distance-transformed image; when the regions overlap, we can memoize dis-

tances, which for extremely dense patches reduces the cost to O(P ). Once the best-

matching pair of regions in X and Y are found, computing the fine shape similarity,

Dshape(X, Y ), requires O(PES2) dot-products between each edge fragment and the

distance-transformed image.
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Faces Airplanes Motorbikes Cars Rear

Figure 2: Examples of correct detections. These LabelMe images are scanned with

the shape models discovered by our method from the Caltech images; the position and

scale yielding the minimal chamfer distance to our shapes is shown with a bounding

box.

Faces Airplanes Motorbikes Cars Rear

Figure 3: Examples of incorrect detections. These images have large amounts of clut-

ter, object rotation, and/or not enough edges detected on the object that lead to inaccu-

rate chamfer matching.
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