

Slow and steady feature analysis: higher order temporal coherence in video

Dinesh Jayaraman and Kristen Grauman UT Austin

 $\boldsymbol{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

AT AUSTIN

KITTI Top-3 Results

two frames, find th = $\mathbf{z}_2 + (\mathbf{z}_2 - \mathbf{z}_1)$	ird in
$\frac{rank}{100}$ × 100	

Query

Datasets	NORB	KITTI	HMDB
SFA-1 [1]	0.95	31.04	2.70
SFA-2 [2]	0.91	8.39	2.27
SSFA (Ours)	0.53	7.79	1.78

Qualitative and quantitative feature "steadiness" verification

Regularized category recognition from few samples

Strong and consistent accuracy gains for higher-order temporal coherence vs. *slow* feature learning methods

Unsupervised vs. supervised pretraining and finetuning

Pretraining on unlabeled video vs. labeled CIFAR-100 images:

PASCAL-10 Actions SSFA (ours) SFA-2 SFA-1

SUN Scenes

Our unsupervised features can even surpass supervised pretraining with up to 50,000 additional class labels for an auxiliary task!