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Abstract

Text detection in stores has valuable applications that

could transform the shopping experience, yet cluttered store

environments present distinct challenges for existing tech-

niques. We propose a strategy for text detection in stores

that exploits a repetition prior. Leveraging the fact that

shops typically display multiple instances of the same prod-

uct on the shelf, our approach localizes text regions with a

global view of the image, preferring instances that have re-

peated support in the scene. On two challenging real-world

datasets taken with a mobile phone and wearable camera,

we demonstrate our method’s substantial advantages com-

pared to several state-of-the-art techniques in grocery store

environments.

1. Introduction

Text detection in natural scenes requires localizing re-

gions in the image containing text—no matter what that text

says, or what font it is written in. Text, signs, and labels

are ubiquitous and informative in many natural environ-

ments. As such, with the increasing use of portable mobile

and wearable computing platforms, reliable text detection is

critical for many applications. For example, text detection

(and a subsequent recognition process) is vital to real-world

applications such as sign reading for place localization for

tourists or mobile robots [19]; for assistive technology to

help visually impaired users navigate the world with more

independence [7, 22, 39]; and for image/video indexing and

retrieval based on scene text or graphical overlays [17, 12].

Whereas early work focused on constrained scenarios,

such as finding lines of text in a document, today’s methods

tackle text detection “in the wild” in natural scenes. Doing

so requires robustness to different fonts, languages, illumi-

nations, orientations, occlusions, and clutter. While in some

cases one can assume a lexicon of known words is available,

in the more general “lexicon-free” setting the method must

also detect words that were never previously seen. Once a

bounding box around text in the scene is localized, it can be

passed to a recognition pipeline to read what the words say.

Figure 1. There are distinct challenges in finding text in store set-

tings (right) versus street-side scenes (left). Text detection in a

store is difficult due to the high density of text and text-like tex-

tures. We propose to exploit the fact that products appear in du-

plicate on store shelves when performing text detection, using the

redundancy as a helpful prior.

Despite a surge of exciting progress in natural scene

text detection, we observe that a domain of great practical

interest—stores—has largely been ignored. Current meth-

ods and datasets often focus on outdoor StreetView-style

settings where text may appear on storefront signs, street

signs, addresses, or license plates [37, 31, 40, 16]. How-

ever, text is also abundant in indoor store environments,

where text appears on the labels of products that line the

shelves (e.g., grocery stores, bookstores, electronics, etc.).

Detecting it would assist in identifying products, retrieving

relevant product reviews, reading prices, checking online

vendors, searching for relevant coupons, or helping a visu-

ally impaired user complete his shopping list. Such applica-

tions promise to revolutionize the traditional shopping ex-

perience, mixing the bricks-and- mortar environment with

the online marketplace.

However, text detection in a store presents its own chal-

lenges. Images of store shelves contain many products

crowded together. Even worse, many products contain de-

sign patterns that share similar texture as text, and most

have a high density of text occurrences. These properties

can be problematic for mainstream text detection systems

using sliding window [37, 13, 3, 43] or connected compo-

nents [6, 2, 24, 42, 26, 27] to find characters. While some

products are rigid and have planar surfaces facing outwards,

others are deformable or have more complex shapes, and,



regardless, consumers disrupt the orderliness whenever they

pick and replace a product. Furthermore, whereas existing

datasets often contain images purposely taken so the text

is somewhat prominent within the view, imagery captured

more casually and even passively (i.e., on a shopper’s wear-

able camera) will lack helpful cues implicit in the image

composition. See Figure 1.

We propose an approach to text detection that specifi-

cally targets indoor store settings. As discussed above, the

high density of products on a shelf creates many nuisances

for detecting text. However, that same density comes along

with one helpful factor: each product typically appears mul-

tiple times on the shelf, side by side. Our key insight is that

duplicate occurrences of text can be a valuable prior for a

text detector. Intuitively, a detector primed to see multiple

instances of the same word can prioritize windows that have

repeated support. We call this a repetition prior. Enforcing

this prior is non-trivial, since not only the text repeats, but

so does everything else on the product label!

Our method works as follows. In contrast to a standard

sliding window approach that would check each region in

isolation for its “text-ness”, we take a more global view

of the scene and jointly detect text, with a preference for

text windows that repeat. Given an image, our approach

first generates a set of text bounding box proposals using

low-level cues. Then, a clustering step identifies those can-

didates with repeated support in terms of text appearance,

overlap, and scale similarity. The resulting clusters are con-

sidered to be the most trustworthy text windows. Using

those high-precision windows as anchors, we expand recall

via local feature matching between the clustered hypothe-

ses and the remaining image. The output is a ranked list of

detected text bounding boxes (one word per box) and their

confidences.

We validate our approach on two challenging grocery

shopping datasets taken with a mobile phone [8] and wear-

able Google Glass camera [29], both of which we newly

annotate to support benchmarking of text detection. We

demonstrate that by leveraging a text repetition prior, our

method outperforms and/or enhances multiple state-of-the-

art techniques. The result is a promising step toward text

detection in complex real-world shopping environments.

2. Related Work

We next summarize how our idea relates to previous

work in text detection, product recognition, near-duplicate

image detection, and object cosegmentation.

Text detection Space does not permit a comprehensive

review of the text detection literature, so we briefly sum-

marize current trends. Please see [41, 44] for surveys. One

fundamental strategy is to search for text-like regions us-

ing bottom-up grouping [6, 2, 24, 42, 4, 26, 27]. The

Stroke Width Transform (SWT) [6] and Maximally Stable

Extremal Regions (MSER) [24] are two widely used exam-

ples. An alternative strategy is to learn a detector to classify

pixels or windows as text/non-text (or a particular charac-

ter) [37, 13, 3, 43, 23, 12, 28]. For example, recently deep

convolutional neural networks [38, 11, 13, 12] have been

explored. We employ the method of [13] to generate our

initial text proposal regions. In both major strategies, the

detected characters are then grouped into words. Recent

work also considers detecting whole words at once [12].

When available, a lexicon can guide the detection [1, 37].

However, like recent methods [7, 2, 42, 26, 26, 27, 43, 11,

6, 3, 38, 12, 9, 12], we aim to operate lexicon-free, so that

prior knowledge about the words to be encountered is not

required.

In contrast to any existing text detection work, 1) we are

specifically concerned with text in store settings, 2) we pro-

pose a novel “repetition prior” suited to those settings, and

3) we treat the detection process at the scene level, as op-

posed to independently scanning each region for the pres-

ence of text.

Product recognition Prior vision systems involving store

products focus on the product recognition problem [8, 39,

18, 35, 32], including limited work specifically for gro-

ceries [8, 39, 22]. In those systems, the task is instance

recognition, where local features are matched to a database

of object models. In contrast, our task is text detection,

where text regions are discovered on objects for which the

system has no prior model. While it may be possible to link

the two ideas, our problem is distinct in important ways.

First, knowing where an object (product) is falls short of

extracting its text regions, which are needed if word recog-

nition is to be done. Second, the need for a bank of known

object models is restrictive; in a store setting, new prod-

ucts are continually added and vendors revise the product

labels over time. Third, the repetitive structure we exploit

in our approach is actually a confounding factor for stan-

dard instance recognition methods: spatial verification of-

ten fails when multiple similar looking things appear to-

gether [14, 34]. Finally, product recognition methods are

known to fail for fine-grained differences (e.g., different fla-

vors of the same food product), some of which may be best

handled by good text detection (e.g., to distinguish “barbe-

cue” vs. “plain” potato chips).

Detecting repeated patterns Our use of repeated patterns

may bring to mind work on near-duplicate detection (NDD)

(e.g., [15, 36]). In NDD, the goal is to identify similar im-

ages of the same real-world content, but with some minor

alterations (like cropping, resampling, etc.). Like product

recognition methods, NDD techniques largely rely on lo-

cal feature (SIFT) matching. Unlike NDD, our goal is to

detect text. Furthermore, in our case the repeated patterns



exist within the same image, and the number of repetitions

is unknown, ranging from none to many.

The idea of performing better localization by exploiting

repetition has its roots in object cosegmentation [30, 10].

Given two images containing the same object on two dis-

tinct backgrounds, cosegmentation methods seek a joint

segmentation where the foregrounds agree in appearance.

At a high level, our idea to jointly extract text bounding

boxes by exploiting the fact they repeat across the scene is

related in spirit. However, again, in our scenario the re-

peated patterns occur in the same image, and there are mul-

tiple possible patterns that repeat. Furthermore, whereas

cosegmentation assumes the foreground objects rest against

unrelated backgrounds, our “foreground” text regions are

explicitly embedded within similar-looking backgrounds, a

significant challenge.

3. Approach

Our goal is text detection in store environments. The

input is an image, the output is a set of confidence-ranked

bounding boxes believed to contain one word of text each.

Our method does not perform text recognition.

Our “repetition prior” has value in settings where prod-

ucts repeat on the shelves, and they have labels with texts

and/or visible price tags. This applies to places like gro-

cery stores, bookstores, music stores, etc., but not arbitrary

stores, e.g., not most clothing stores. A user may snap a

photo of the shelves using a mobile device or simply walk

down the aisle wearing a camera like Google Glass; we

study both such scenarios in our experiments. We make no

explicit assumptions about the positioning of objects on the

shelves, though (due to the behavior of existing text detec-

tion and feature matching methods) our approach will fare

best when they are near-planar and/or positioned such that

their text regions are similarly visible. We assume no prior

knowledge about a lexicon nor any prior knowledge about

how many unique products appear in a single input image.

Our method is also independent of any specific product.

Figure 2 shows an overview of our approach. Given

an image, we first generate candidate text bounding boxes

(Sec. 3.1), and then identify similar candidate boxes

by clustering with criteria specially crafted for our task

(Sec. 3.2.1). Next, for each identified cluster, we expand

the recall rate by matching a representative of each cluster

to other visually similar regions that were ignored by the

initial text detector (Sec. 3.2.2). Finally, based on the re-

sults of the clustering and matching stages, we rank each

text bounding box with a confidence score (Sec. 3.2.3).

3.1. Generating text region proposals

The first step is to generate an initial set of text region

proposals. Any existing text detector could be used for this

step. It serves as a starting point, to be refined and expanded

by our approach.

We use the state-of-the art method of Jaderberg et

al. [13]. It trains a convolutional network network (CNN)

to classify 24 × 24 pixel image patches as text or non-text.

Given a novel image, the classifier is applied using a multi-

scale sliding window search, producing a confidence-rated

“text saliency” value at each pixel. We use the code kindly

shared by the authors to obtain these saliency maps. Then,

we postprocess them in a manner similar to [13] to ob-

tain a set of candidate word box proposals. Specifically,

we threshold the text saliency to find connected component

regions of high probability; these likely correspond to in-

dividual characters. Then we group neighboring character

regions based on their spatial distance and the differences in

their heights, yielding boxes likely to correspond to words.

Word bounding boxes are generated independently at each

scale and then merged into a global set by non-maximal sup-

pression.

3.2. Incorporating the repetition prior

With the set of text region proposals in hand, we next

incorporate the repetition prior. The idea is to first identify

similar-looking proposals and group them into clusters. As

discussed above, since we expect a priori to see a word mul-

tiple times in the image, finding multiple similar proposals

is evidence that they are more trustworthy instances. Con-

versely, “singleton” text region proposals, while still possi-

bly valid and not discarded by our method, are trusted less

under the repetition prior.

Incorporating a repetition prior is non-trivial. This is be-

cause 1) there is significant repetition of non-text elements,

too, and 2) there is an unknown number of repeating prod-

ucts per input image, from zero to many. We design our

clustering procedure and the subsequent matching step with

these considerations in mind.

3.2.1 Connected components clustering of proposals

We pose the problem of finding multiple occurrences of

the same text as finding connected components in a graph,

which has several advantages. First, connected components

allows us to find groups of similar proposals without hand-

selecting the number of distinct words in the scene (i.e., as

would be necessary with many alternative clustering meth-

ods). Furthermore, it naturally handles a mix of both single-

tons and repeating words. This means we can employ the

prior without ignoring word occurrences that don’t follow

the prior. Finally, it permits a clean way to require multiple

grouping criteria simultaneously via a binary adjacency ma-

trix, as opposed to alternative clustering methods that com-

bine multiple real-valued similarities.

We build a graph for the image, where each node is a
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Figure 2. Overview of our approach. We start with candidate text bounding boxes as shown on the left (only a subset are drawn for

legibility purposes), and then find similar candidates by connected components clustering (middle). Using each cluster as an anchor, we

detect additional text boxes via local feature matching, as shown on the right. Original candidate boxes are drawn in solid lines and newly

detected text candidate boxes are drawn in dotted lines. Best viewed on pdf.

proposal box. To define adjacency between the nodes, we

consider three criteria: visual similarity, size, and overlap.

The visual similarity criterion says that two proposal

nodes are connected if they look similar, meaning they are

likely to contain the same text. As features we use his-

tograms of DoG SIFT visual words, pooled in 1 × 4 spa-

tial bins with a k-means vocabulary with 300 words. Let

N denote the number of initial proposals, and let Av be the

N×N visual similarity adjacency matrix for the graph. For

proposal nodes with descriptors xi and xj , we define

Av
ij =

{

1 if χ2(xi, xj) < τ

0 otherwise,
(1)

where χ2 is the χ2 histogram distance, and τ is a threshold

derived from the data. In particular, τ = µ− 1.5σ, where µ

and σ are the mean and standard deviation, respectively, of

the distances among all pairs of boxes in the image.

The size criterion says that two proposal nodes are con-

nected if they are similar in size and aspect ratio. Let wi,

wj and hi, hj denote the width and the height for candidate

boxes i and j, respectively. We define the size adjacency

matrix As by comparing the size ratios in each dimension:

As
ij =

{

1 if 1

β
< wi

wj
< β and 1

β
< hi

hj
< β

0 otherwise,
(2)

where β = 4

3
. We set this threshold based on manually

inspecting a few examples, then fixed it for all results.

The last adjacency matrix Ao captures the overlap cri-

terion, which says two nodes cannot be connected if they

overlap:

Ao
ij =

{

0 if box i overlaps box j

1 otherwise
(3)

This criterion is important to avoid clusters comprised of

slightly different proposals surrounding the same text. It

serves as a form of non-maximal suppression.

The final adjacency matrix A used for clustering com-

bines all three adjacency matrices Av , As, and Ao:

Aij =

{

1 if Av
ij = As

ij = Ao
ij = 1,

0 otherwise.
(4)

In other words, two nodes are only connected if they satisfy

all three conditions.

We group vertices (candidate text boxes) into disjoint

clusters by finding connected components with the adja-

cency matrix A. Each cluster with more than one node is

hypothesized to be multiple occurrences of the same text.

3.2.2 Matching from the discovered clusters

Thus far, we have discovered plausible repeated text boxes.

By ranking those boxes higher, we can expect improved pre-

cision thanks to the repetition prior. Next we show how

to bootstrap from those clusters to further increase recall.

This step augments the detections with regions missed by

the original text detector (Sec. 3.1). In particular, we ex-

ploit the confident clustered boxes as “anchors” to search

for those text regions that are difficult to find with the low-

level text saliency metric alone, whether due to partial oc-

clusions, non-frontal views, or varying illumination.

We find that due to the high rate of confuser features in

the cluttered store scenes, the standard local feature-based

object instance matching pipeline (e.g., [20]) is insufficient.

This is because multiple occurrences of the same local fea-

tures impede spatial verification and/or make many local

features fail the ratio test, resulting in (seemingly) too few

reliable points for matching. Thus, we devise a simple vari-

ant better suited to our setting, as follows.

First we select a proposal box for each connected com-

ponent cluster from Sec. 3.2.1 to serve as its representative

or “template”.1 We select the box with the minimum total

1We use the word “template” for simplicity, but note that it is matched

via local features, not as a global template.
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Figure 3. Overview of the matching step. We divide the image into grid cells and match local features from a cluster’s representative text

box (the “template”) with those in each of the grid cells (left). For each matching, we project the template onto the image (middle). Then

we refine the text box localization by matching the template with the projected region (right). See Sec. 3.2.2.

χ2 distance to the rest of the cluster members. Then, we di-

vide the image into overlapping grid cells, and match each

template against each grid in the image. The grid adapts

to the scale of each template. Namely, for a template with

dimensions wt × ht, the overlapping grid cells have width

1.5wt and height 3ht with horizontal step size 0.75wt and

vertical step size 1.5ht. To match a template to each grid

cell, we use standard local DoG keypoint SIFT matching,

followed by the second neighbor ratio test, and affine geo-

metric verification. If more than 20 matched keypoints sur-

vive verification, we use the resulting affine transformation

to project the template bounding box into the original im-

age. Due to the robustness of local feature matching, the

grid cell content may match the template even with partial

occlusion.

Finally, to refine the match localization, we match the

template again with the projected bounding box and then

project the template to the original image with the refined

affine transformation. See Figure 3. If the projected box

does not overlap with any text bounding box already in the

cluster, we add it as a new detection.2

3.2.3 Confidence ranking for text box proposals

The clustering and matching stages above leave us with 1)

an expanded set of proposals relative to the initialization in

Sec. 3.1, and 2) a means to refine the confidence rating as-

sociated with all proposals. Leveraging the repetition prior,

we first group the proposals into two equivalence classes,

based on whether they stem from a repeated pattern or not:

those output by both Secs. 3.2.1 and 3.2.2 comprise one

equivalence class, and the singletons comprise the other.

Then, the boxes within each class are sorted by the sum

of their pixels’ text saliency (cf. Sec. 3.1). We use the sum,

2We also attempted a more complicated approach to jointly cluster and

refine the boxes’ localization, a la iterative methods used for weakly su-

pervised segmentation [5, 33], but we found it to be inferior. This is likely

due to the difficulty in relying on bottom-up text saliency as a “unary” po-

tential on the boxes; it must be very strong to withstand the effects of the

products’ repeated non-text patterns surrounding the true text boxes.

rather than the average, since otherwise small fragments of

words would be favored. The output confidence ranking

consists of the saliency-sorted class of repeated texts, fol-

lowed by the sorted class of non-repeated texts. This entire

process improves text detection precision, since we know

which jointly extracted hypotheses are most trustworthy, as

we will see in results.

4. Results

We evaluate our approach on two challenging datasets

and compare to multiple recent text detection methods. We

also examine the impact of the design choices in our clus-

tering approach.

Datasets We consider two realistic datasets containing

grocery store images: GROCERY PRODUCTS [8] and

GLASS VIDEO [29], both obtained from the authors.

• GROCERY PRODUCTS [8] consists of product images

taken from five stores with mobile phones, with reso-

lutions of 2448 × 3264 pixels or 3264 × 2448 pixels.

The dataset has a total number of 3235 products, all of

which are food and drinks, such as chocolate bar, milk

bottles, cereal boxes and coffees. Each image contains

a variety of products, ranging from 6 to 30 in num-

ber. For our tests, we use all 352 images containing

detectable text (see below).

• GLASS VIDEO [29] consists of video frames captured

with the wearable camera on GoogleGlass. It contains

products similar to GROCERY PRODUCTS, but more

variable viewpoints due to the wearable camera. Due

to finite annotation resources, we select 139 frames

from the three 8 minute videos that contain text and

cover a diverse range of products. This data is even

more challenging than the GROCERY PRODUCTS be-

cause 1) the frames have lower resolution (1280× 720
pixels), 2) they suffer from motion blur, and 3) orig-

inating from a passive wearable camera, they con-
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Figure 4. (a) Text detection accuracy on the GROCERY PRODUCTS (left) and GLASS VIDEO (right) datasets, compared to existing methods.

Our repetition prior improves the results of a state-of-the-art text detector [13], and also outperforms two existing bottom-up text finding

methods [6, 9]. (b) Accuracy on the same datasets, using ablated variants of our approach. Our complete approach does best, supporting

the method design choices. Numbers in legend denote mAP. Best viewed in color.

tain wider viewpoint variation compared to those pho-

tos taken purposely with a mobile phone in the other

dataset.

Since both datasets were originally used for product

recognition, we augment them with annotations for ground

truth text bounding boxes to enable quantitative evaluation.

To ensure labeling consistency, we followed the following

three rules for annotation: 1) Label each word with a tight

bounding box; 2) Do not label vertically oriented or par-

tially visible text; 3) Do not label words of height less than

3% of the image height (80 or 20 pixels for the PRODUCTS

and GLASS datasets, respectively). The last requirement is

based on the minimal scale searched by the existing text

saliency method [13]. This yielded a total of 2,390 and

1,222 text boxes for the two datasets3, respectively.

Comparison to existing methods First we compare to

three recent methods for lexicon-free text detection:

• STROKE WIDTH TRANSFORM, Epshtein et al. [6]: a

well-known method that leverages the consistency of

characters’ stroke width to detect arbitrary fonts. We

use the code provided at4, applied on multiple scales

to improve its results.

• MSER TEXT DETECTION, Gomez et al. [9]: uses

Maximally Stable Extremal Regions [21]—a popular

tool in text detection [2, 25, 26, 11, 9]—combined with

a perceptual organisation framework. We use the au-

thors’ code.5

3We make annotations publicly available for download at

http://vision.cs.utexas.edu/projects/textdetect
4https://github.com/lluisgomez/DetectText
5https://github.com/lluisgomez/text extraction

• DEEP TEXT SPOTTING, Jaderberg et al. [13]: a state-

of-the-art method that uses multiple stages of convolu-

tional neural networks to predict text saliency at each

pixel (code publicly shared by the authors 6), followed

by the grouping stage described in Sec. 3.1 to gener-

ate boxes (implemented by us based on the authors’

description in their paper).

For the first two methods [6, 9], we rank the outputs by

bounding box size; the codes do not produce confidence

values, so this is a sensible way to favor the more prominent

detected texts, which are more often correct. For [13], we

use the summed text saliency scores as done for our method

(cf. Sec. 3.2.3).

Figure 4(a) shows the precision-recall results for each

dataset. We follow the standard PASCAL VOC detection

criterion: a detection is correct if its bounding box’s Inter-

section over Union (IoU) score exceeds 50% overlap with

the ground truth.

Overall, our method outperforms the existing methods.

Our gains over the two non-learning approaches ([6, 9])

are largest, reinforcing recent findings about the power of

learned character detectors that leverage large training data

sets. Furthermore, we see sizeable gains over the state-of-

the-art deep learning approach [13], particularly in terms of

precision. This is an important empirical finding, since our

method specifically builds on the output of [13], enhancing

it with the repetition prior. Our method improves the CNN

approach by leveraging the repetition prior to better rank the

bounding boxes proposals and re-detect harder texts.

For all methods, the absolute accuracy is better on the

GROCERY PRODUCTS dataset. This reflects the greater dif-

ficulty of the GLASS VIDEO data, as discussed above. The

gap between our method and existing methods is also larger

6https://bitbucket.org/jaderberg/eccv2014 textspotting



Grocery Products

Success Case Failure Case

Glass Video

Success Case Failure Case

Baseline Top 10  

Our  Method Top 10

Baseline Top 5

Our  Method Top 5

Our  Method Top 20

Baseline Top 20

Baseline Top 20

Our  Method Top 20
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for the first dataset. We suspect this is because our cluster-

ing and matching tasks are correspondingly more difficult

on the Glass data.

Our method takes 37 seconds to run in Matlab on one

CPU per test case. Since the matching dominates the com-

putation time, it can be easy to reduce, e.g., using k-d trees.

Ablation study Next we demonstrate the usefulness of

each component of our method in an ablation study. We

compare our “full” method to several variants: 1) Clus-

ter with only visual appearance and ignore size and over-

lap (VISUAL); 2) Cluster with visual appearance and size

but ignore overlap (VIS+SIZ); 3) Cluster with visual ap-

pearance and overlap but ignore box size (VIS+AP); 4)

Cluster with only size and overlap but ignore visual ap-

pearance (SIZE+AP) and 5) Cluster with all three con-

straints but do not expand the detection set with matching

(OURSCLUSTER).

Figure 4(b) shows the results. We see that our full

method achieves the best performance. The connected com-

ponents clustering (OURSCLUSTER) that considers all three

proposed constraints (appearance, size, and overlap) outper-

forms clustering algorithms that use only one or two con-

straints. This demonstrates that visual appearance alone is

not enough to find reliable repetitions. Size is more use-

ful on GROCERY PRODUCTS than in GLASS VIDEO since

products in GROCERY PRODUCTS are often fronto-parallel

and therefore most duplicate occurrences of text have sim-

ilar sizes. Considering the impact of our matching stage

(OURSFULL vs. OURSCLUSTER), we see the intended im-

provement in recall at the tail of each plot. The re-detection

step finds texts that are ignored by the original text detector.

In short, both the grouping and matching stages contribute

towards a better ranked and higher recall set of true text de-

tections.

Qualitative examples Finally, we present example text

detections in Figure 5 for both datasets. In each part, the

first and third rows are our method and the second and

fourth rows are the best competing baseline [13]. We show

both success cases (marked in green) and failures cases

(marked in red).

These image examples help illustrate where and how our

repetition prior helps. For example, in the leftmost image

of the first row, our method is able to find three repeat-

ing words and considers them more confident than the non-

repeating candidates. These identified repeating text candi-

dates are in fact true text and are properly localized. On the

other hand, the baseline misclassifies part of a product shelf

as text, possibly due to its similar appearance with the letter

i or l. Such non-text regions are less likely to repeat, and

therefore our prior helps disregard that error. Products in

GLASS VIDEO (See Figure 5) are often not fronto-parallel.

Our method can also handle 3D transformation since SIFT

matching tolerates 3D rotations about 30 degrees to 50 de-

grees.

Overall, our method focuses attention on valid repeating

texts and can ignore spurious proposals.

These images also help us analyze our method’s failure

modes. The rightmost image in the first row contains vi-

sually similar text bounding boxes that are poorly localized

on vertically oriented texts. Since the ground truth does not

include vertical text boxes, those are considered false detec-

tions. Unfortunately, these repeating false detections cause

our repetition prior to fail. Then the matching step intro-

duces more errors by finding more similar non-text regions.

The rightmost image in the third row contains many over-

lapping text regions, most of which are poorly localized.

Although we do not want text bounding boxes to overlap,

clustering based on connected components does not guar-

antee that all pairs of boxes in the same cluster do not over-

lap; it only ensures each box does not overlap with at least

another box in the cluster.

5. Conclusions

Text detection is vital for various real-world applications,

but it remains a challenging computer vision problem due to

the great variety of scene text and background complexity.

In this paper, we study text detection in stores due to both

its great potential applicability and complexity. We propose

to leverage a repetition prior to improve text detection, and

we demonstrate its utility on two challenging datasets of

grocery products. The result is a promising step toward text

detection in more challenging real-world environments.

Ultimately, we envision a reliable text detection system

running in real-time on either mobile or wearable comput-

ing platforms, providing users with revolutionary experi-

ences in many real-world environments. In the future, we

will explore ways to reduce computation in the text detec-

tion pipeline by focusing on the important regions where a

user pays attention, leveraging video and other sensory data,

such as gaze.
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[9] L. Gómez and D. Karatzas. Multi-script text extraction from

natural scenes. In ICDAR, 2013.

[10] D. S. Hochbaum and V. Singh. An efficient algorithm for

co-segmentation. In ICCV, 2009.

[11] W. Huang, Y. Qiao, and X. Tang. Robust scene text detec-

tion with convolution neural network induced mser trees. In

ECCV. 2014.

[12] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.

Reading text in the wild with convolutional neural networks.

arXiv preprint arXiv:1412.1842, 2014.

[13] M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep features

for text spotting. In ECCV. 2014.

[14] H. Jégou, M. Douze, and C. Schmid. On the burstiness of

visual elements. In CVPR, 2009.

[15] Y. Ke, R. Sukthankar, L. Huston, Y. Ke, and R. Sukthankar.

Efficient near-duplicate detection and sub-image retrieval. In

ACM Multimedia, 2004.

[16] S. Lee, M. S. Cho, K. Jung, and J. H. Kim. Scene text ex-

traction with edge constraint and text collinearity. In ICPR,

2010.

[17] R. Lienhart and W. Effelsberg. Automatic text segmentation

and text recognition for video indexing. Multimedia systems,

2000.

[18] X. Lin, B. Gokturk, B. Sumengen, and D. Vu. Visual search

engine for product images. In Electronic Imaging 2008,

2008.

[19] X. Liu and J. Samarabandu. An edge-based text region ex-

traction algorithm for indoor mobile robot navigation. In

ICMA, 2005.

[20] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 2004.

[21] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide

baseline stereo from maximally stable extremal regions. In

BMVC, 2002.

[22] M. Merler, C. Galleguillos, and S. Belongie. Recognizing

groceries in situ using in vitro training data. In CVPR, 2007.

[23] A. Mishra, K. Alahari, and C. Jawahar. Scene text recogni-

tion using higher order language priors. In BMVC, 2012.

[24] L. Neumann and J. Matas. A method for text localization

and recognition in real-world images. In ACCV. 2011.

[25] L. Neumann and J. Matas. Text localization in real-world im-

ages using efficiently pruned exhaustive search. In ICDAR,

2011.

[26] L. Neumann and J. Matas. Real-time scene text localization

and recognition. In CVPR, 2012.

[27] L. Neumann and J. Matas. Scene text localization and recog-

nition with oriented stroke detection. In ICCV, 2013.

[28] P. X. Nguyen, K. Wang, and S. Belongie. Video text de-

tection and recognition: Dataset and benchmark. In WACV,

2014.

[29] S. Rallapalli, A. Ganesan, K. Chintalapudi, V. N. Padmanab-

han, and L. Qiu. Enabling physical analytics in retail stores

using smart glasses. In ACM MobiCom, 2014.

[30] C. Rother, T. Minka, A. Blake, and V. Kolmogorov.

Cosegmentation of image pairs by histogram matching-

incorporating a global constraint into mrfs. In CVPR, 2006.

[31] A. Shahab, F. Shafait, and A. Dengel. Icdar 2011 robust read-

ing competition challenge 2: Reading text in scene images.

In ICDAR, 2011.

[32] X. Shen, Z. Lin, J. Brandt, and Y. Wu. Mobile product image

search by automatic query object extraction. In ECCV, 2012.

[33] K. Tang, A. Joulin, L.-J. Li, and L. Fei-Fei. Co-localization

in real-world images. In CVPR, 2014.

[34] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual place

recognition with repetitive structures. In CVPR, 2013.

[35] S. S. Tsai, D. Chen, V. Chandrasekhar, G. Takacs, N.-M.

Cheung, R. Vedantham, R. Grzeszczuk, and B. Girod. Mo-

bile product recognition. In ACM MM, 2010.

[36] B. Wang, Z. Li, M. Li, and W.-Y. Ma. Large-scale duplicate

detection for web image search. In ICME, 2006.

[37] K. Wang, B. Babenko, and S. Belongie. End-to-end scene

text recognition. In ICCV, 2011.

[38] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text

recognition with convolutional neural networks. In ICPR,

2012.

[39] T. Winlock, E. Christiansen, and S. Belongie. Toward real-

time grocery detection for the visually impaired. In CVPRW,

2010.

[40] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu. Detecting texts of

arbitrary orientations in natural images. In CVPR, 2012.

[41] Q. Ye and D. Doermann. Text detection and recognition in

imagery: A survey. Pattern Analysis and Machine Intelli-

gence, 2014.

[42] C. Yi and Y. Tian. Text string detection from natural scenes

by structure-based partition and grouping. IEEE Transac-

tions on Image Processing, 2011.

[43] Z. Zhang, W. Shen, C. Yao, and X. Bai. Symmetry-based

text line detection in natural scenes. In CVPR, 2015.

[44] Y. Zhu, C. Yao, and X. Bai. Scene text detection and recog-

nition: Recent advances and future trends. Frontiers of Com-

puter Science, 2015.


