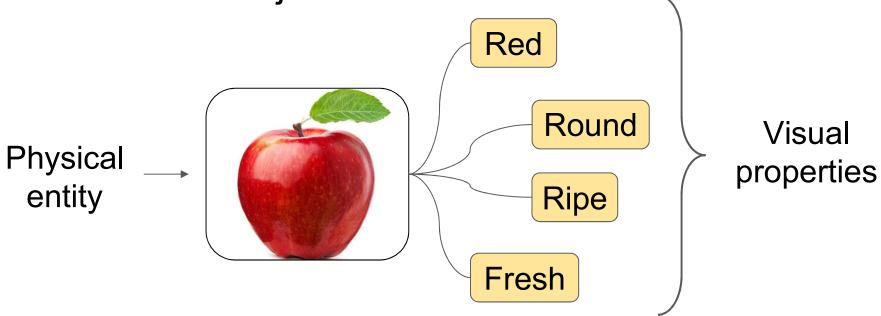
# The language of visual attributes

Kristen Grauman
Facebook AI Research
University of Texas at Austin

# Attributes vs. objects



#### Value of attributes



"Find a more formal shoe"



Zebras have <u>stripes</u> and <u>four legs</u>...



A <u>lone</u> cow grazes in a <u>green</u> pasture.



What color
is the beak?

Visual search

Zero-shot learning

Image/video description

**Interactive** recognition

[Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al. 2009, Lampert et al. 2009, Wang & Mori 2010, Berg et al. 2010, Parikh & Grauman 2011, Branson et al. 2010, Kovashka et al. 2012, Kulkarni et al. 2011, Wang et al. 2016, Liu et al. 2015, Singh et al. 2016, ...]

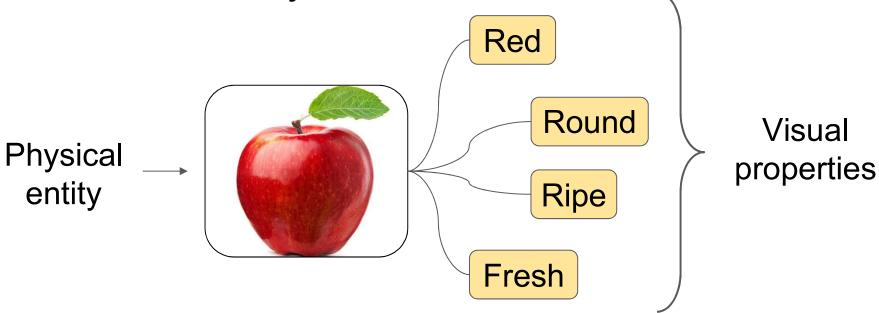
# The language of visual attributes

Attributes as operators

Attributes:adjectives that *modify* objects:nouns

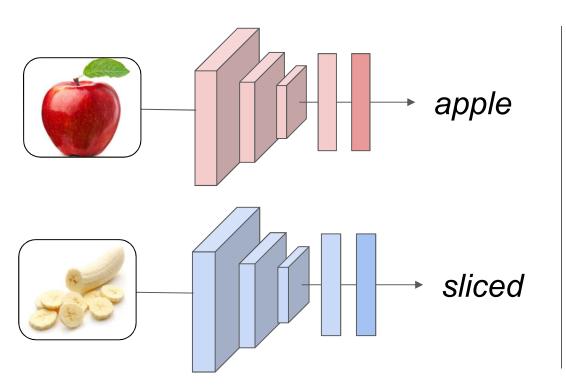
- Attributes for comparisons
   Relative differences that people first describe
- Attributes for visual styles
   Semantic topic models for data-driven styles

#### Attributes and objects



Attributes and objects are fundamentally different

#### Attribute and Object Representations

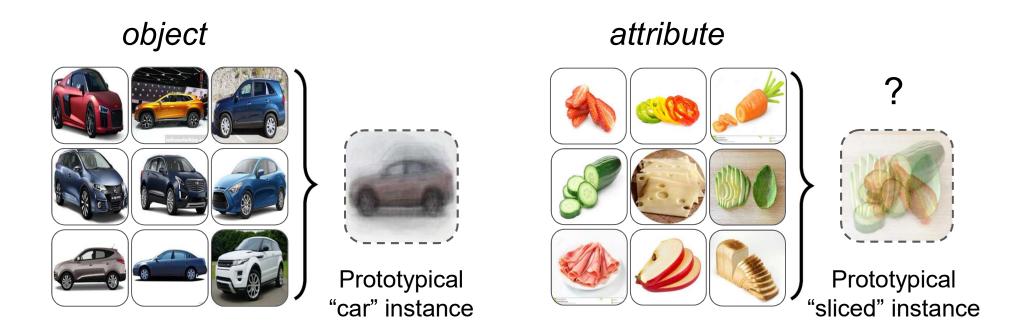


Yet status quo treats attributes and objects the same...

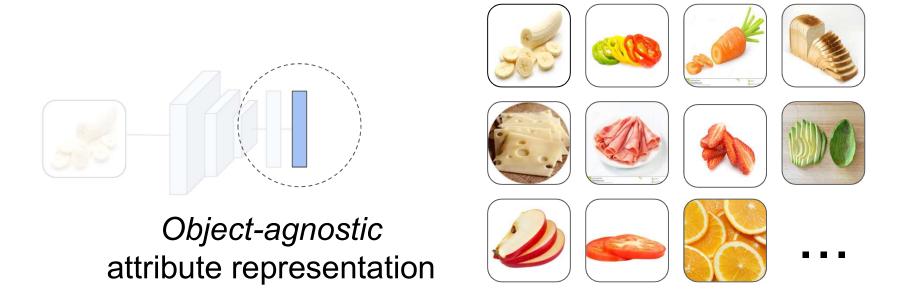
As latent vector encodings

e.g., Wang CVPR16, Liu CVPR15, Singh ECCV16, Lu CVPR17, Su ECCV16,...

# Attribute vs. Object Representations

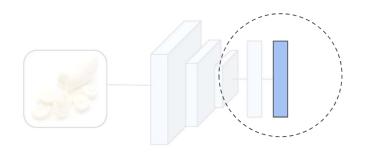


#### Challenges for the status quo approach



Has to capture interactions with every object

## Challenges for the status quo approach



Object-agnostic attribute representation



Old car

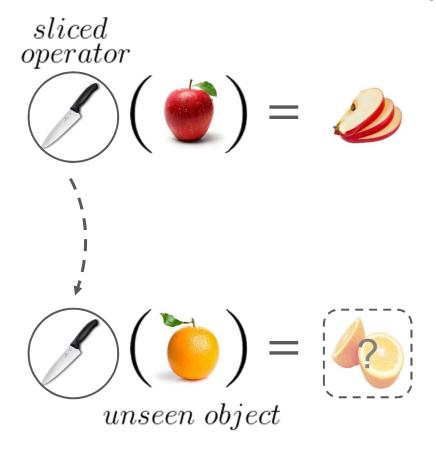


VS.

**Old** man

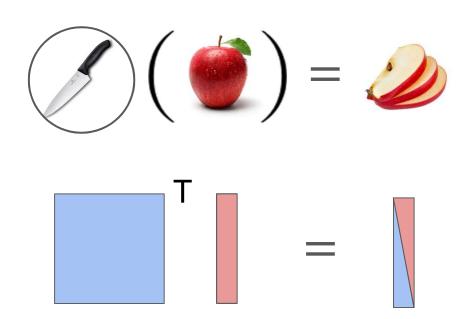
Has to capture attributes' distinct manifestations

#### Our idea – Attributes as operators



Attributes are *operators* that transform object encodings

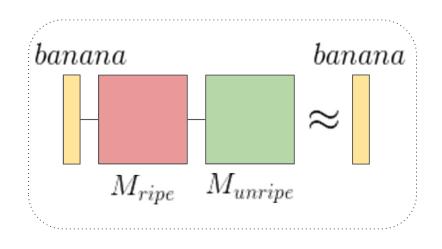
#### Our idea – Attributes as operators



Objects are vectors
Attributes are operators

Composition is: an attribute operator transforming an object vector

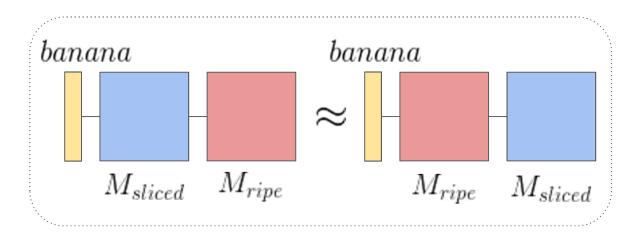
#### Linguistically inspired regularizers



Antonym-consistency:

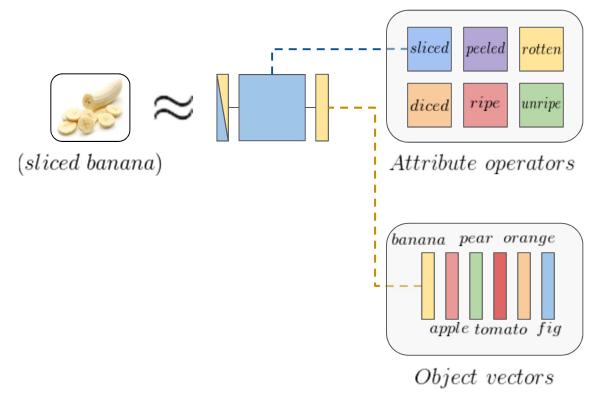
"Unripe should **undo** the effect of ripe"

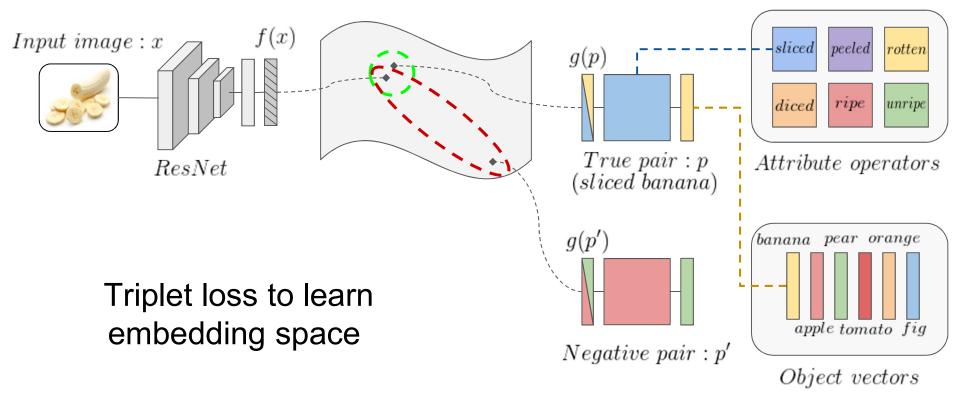
#### Linguistically inspired regularizers

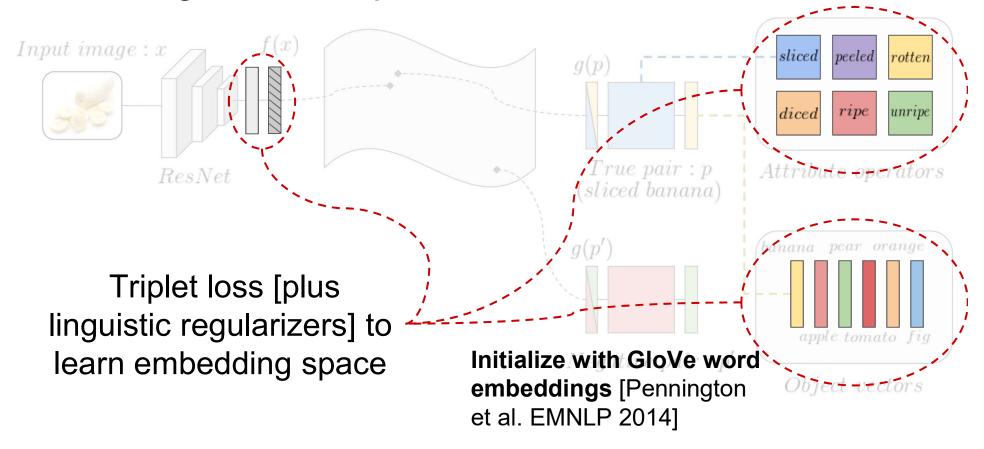


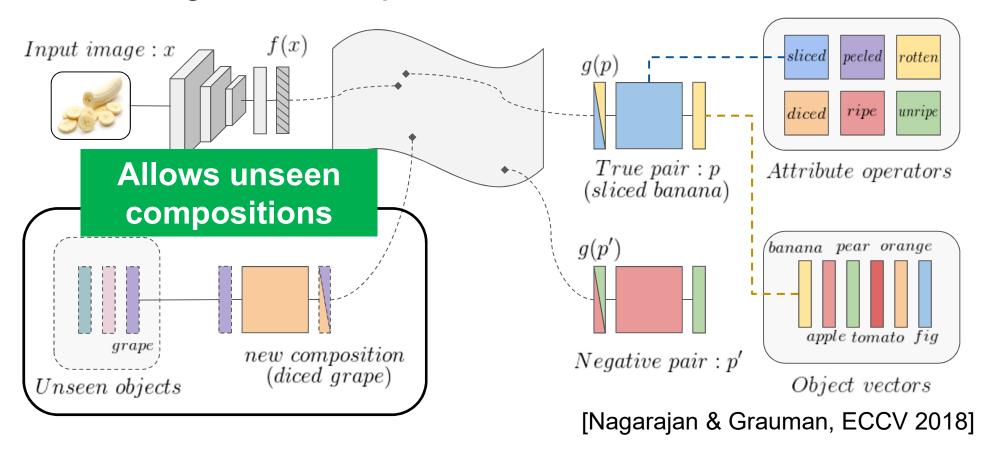
Attribute commutation:

Attribute effects should **stack**.









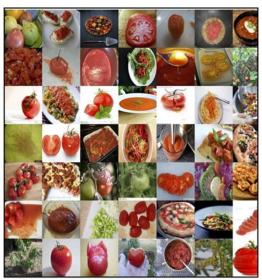
#### **Evaluation**

UT-Zappos 50k (Yu & Grauman, CVPR 14)



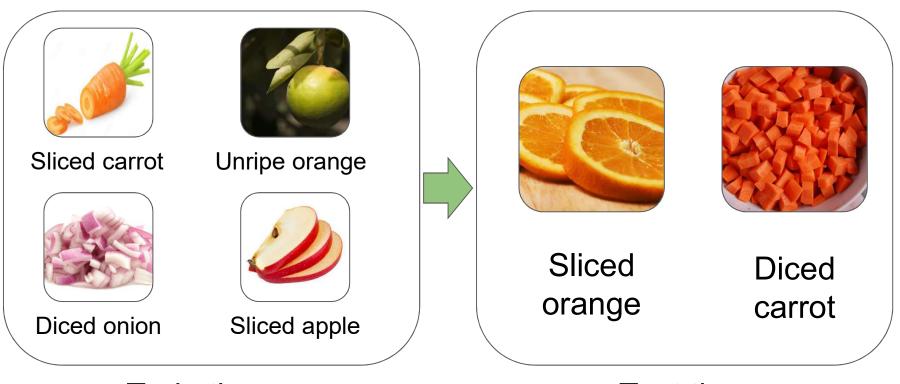
16 attributes x 12 objects

MIT States (Isola et al., CVPR 15)



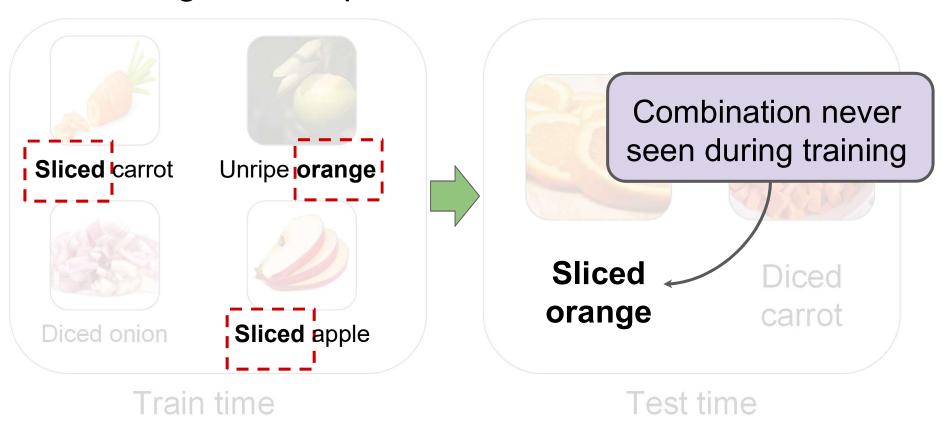
115 attributes x 245 objects

# Evaluating our composition model



Train time Test time

#### Evaluating our composition model



#### Results – Attribute+object composition recognition

MIT States: 6% increase in open world (3% h-mean)

UT-Zap: 14% increase in open world (12% h-mean)

|                 | closed | open | h-mean |
|-----------------|--------|------|--------|
| CHANCE          | 0.1    | 0.05 | 0.1    |
| VISPROD(SVM)    | 11.1   | 2.4  | 3.9    |
| VISPROD(NN)     | 13.9   | 2.8  | 4.7    |
| ANALOGOUS ATTR# | 1.4    | 0.2  | 0.4    |
| REDWINE*        | 12.5   | 3.1  | 5.0    |
| LABELEMBED      | 13.4   | 3.3  | 5.3    |
| LABELEMBED+     | 14.8   | 5.7  | 8.2    |
| Ours            | 12.0   | 11.4 | 11.7   |

[Nagarajan & Grauman, ECCV 2018]

**MIT-States** 

<sup>\*</sup>Misra et al. CVPR 2017 #Chen & Grauman CVPR 2014

## Results - Retrieving unseen (unseen) compositions

Rusty Lock →



query

Nearest Images in ImageNet

# The language of visual attributes

Attributes as operators

Attributes:adjectives that *modify* objects:nouns

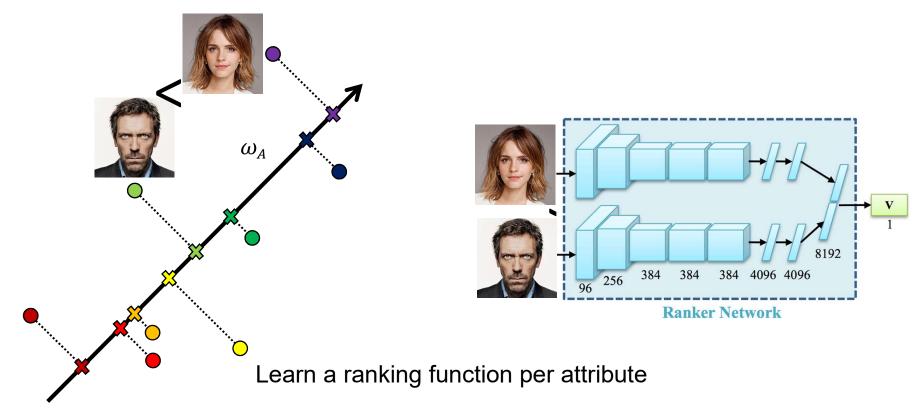
- Attributes for comparisons
   Relative differences that people first describe
- Attributes for visual styles
   Semantic topic models for data-driven styles

#### **Relative attributes**



Parikh & Grauman, ICCV 2011 Singh & Lee, ECCV 2016

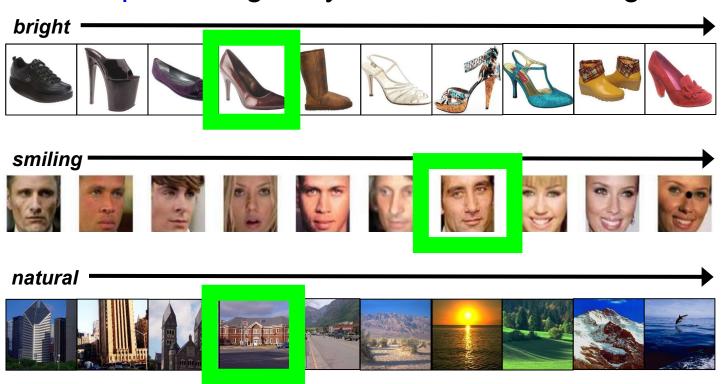
#### **Relative attributes**



Parikh & Grauman, ICCV 2011 Singh & Lee, ECCV 2016

#### **Relative attributes**

Compare images by an attribute's "strength"



[Parikh & Grauman, ICCV 2011]

#### **Challenge #1: fine-grained comparisons**

#### Which is more sporty?

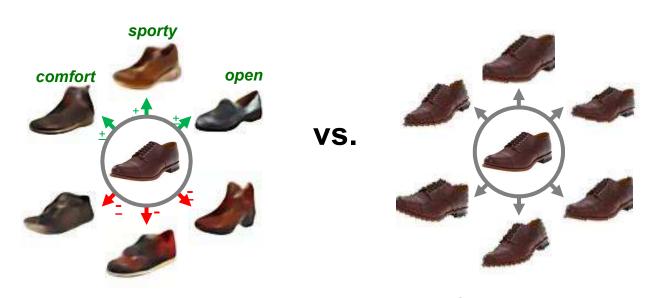


#### **Sparsity of supervision problem:**

- 1. Label availability: lots of possible pairs.
- 2. Image availability: subtleties hard to curate.

#### Idea: Semantic jitter

Overcome sparsity of available fine-grained image pairs with attribute-conditioned image generation



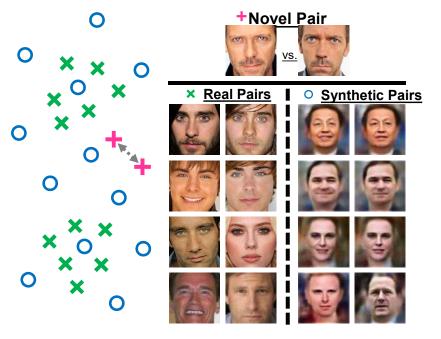
Our idea: Semantic jitter

Status quo: Low-level jitter

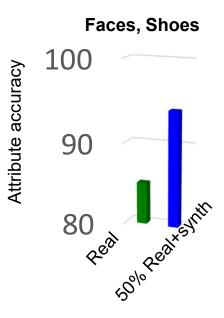
Yu & Grauman, ICCV 2017

#### Semantic jitter for attribute learning

Train rankers with both real and synthetic image pairs, test on real fine-grained pairs.



Ranking functions trained with deep spatial transformer ranking networks [Singh & Lee 2016] or Local RankSVM [Yu & Grauman 2014]



Yu & Grauman, ICCV 2017

#### Challenge #2: Which attributes matter?





Left shoe is \_\_\_\_\_ than right shoe:

Less colorful

Less comfortable

More rugged

More shiny

Less feminine

More stylish

More formal

#### Idea: Prominent relative attributes

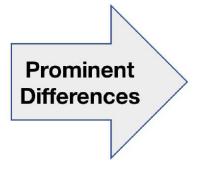
Infer which comparisons are perceptually salient





Left shoe is \_\_\_\_\_ than right shoe:

Less colorful
Less comfortable
More rugged
More shiny
Less feminine
More stylish
More formal

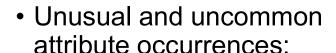


More formal
More shiny
Less comfortable

Less feminine Less colorful More rugged More stylish

#### **Approach: What causes prominence?**

 Large difference in attribute strength:



 Absence of other noticeable differences:







**Prominent Difference:** 





Visible Forehead

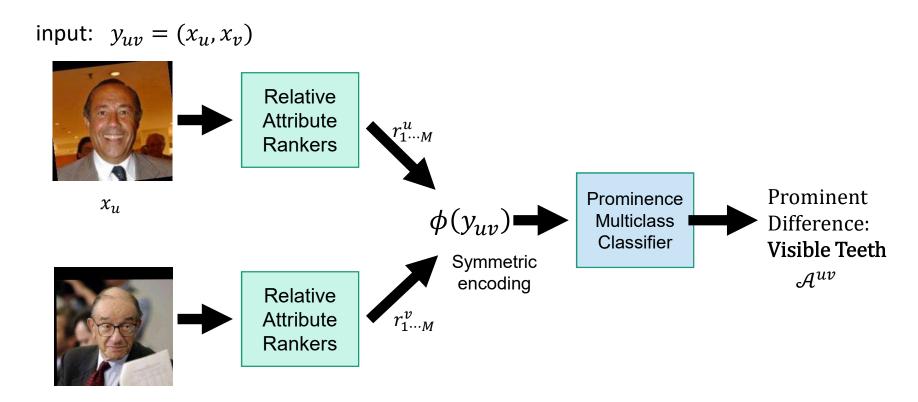




**Dark Hair** 

**In general:** Interactions between all the relative attributes in an image pair cause prominent differences.

#### **Approach: Predicting prominent differences**



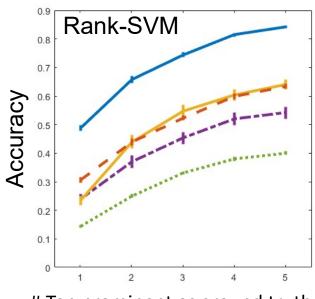
 $x_{v}$ 

#### **Results: Prominent differences**

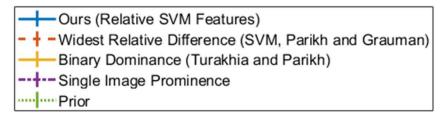


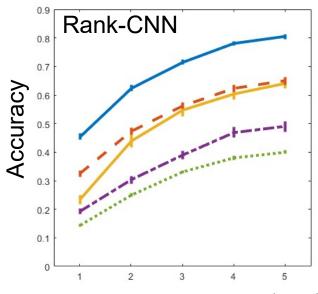
(Top 3 prominent differences for each pair)

#### **Results: Prominent differences**

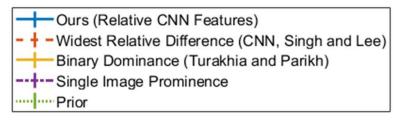


# Top prominent as ground truth

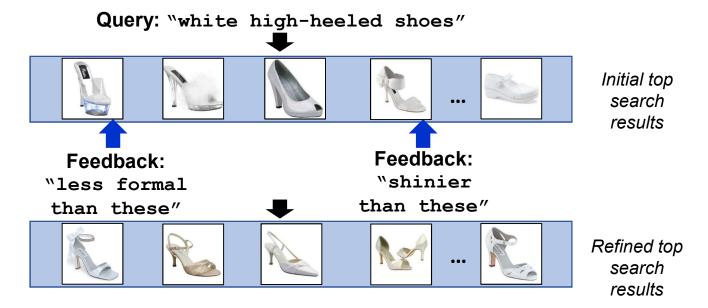




# Top prominent as ground truth

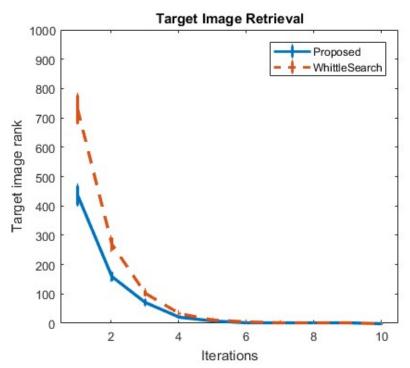


# Prominent differences: impact on visual search



Leverage prominence to better focus search results

# Prominent differences: impact on visual search

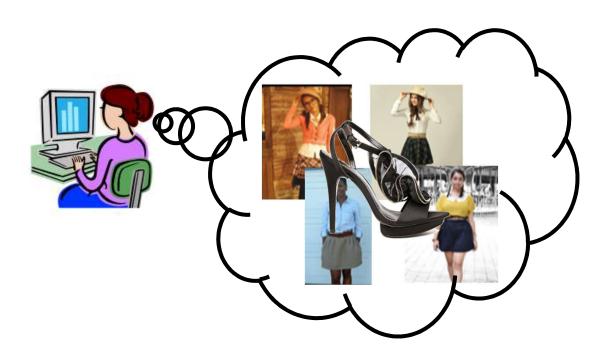


Faster retrieval of user's target image without using any additional user feedback.

Leverage prominence to better focus search results

Chen & Grauman, CVPR 2018

# From items to styles



# The language of visual attributes

Attributes as operators

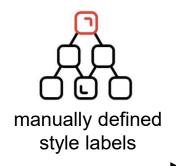
Attributes:adjectives that *modify* objects:nouns

- Attributes for comparisons
   Relative differences that people first describe
- Attributes for visual styles
   Semantic topic models for data-driven styles

## How to represent visual style?







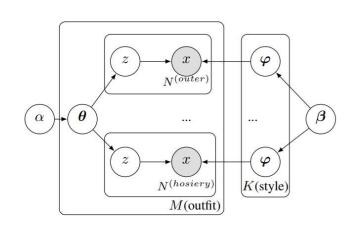
stylistic similarity?

#### **Challenges:**

- Same "look" manifests in different garments
- Emerges organically and evolves over time
- Soft boundaries

#### Idea: Discovering visual styles

Unsupervised learning of a style-coherent embedding with a **polylingual topic model** 





outer layer
outer\_color\_orange
outer\_color\_white
outer\_pattern\_printed
outer\_decoration\_button
outer\_sleeve\_long
outer\_length\_short
outer\_front\_open

upper shirt\_color\_white shirt\_pattern\_plain shirt\_sleeve\_short

An **outfit** is a mixture of (latent) **styles**. A **style** is a distribution over **attributes**.

## **Example discovered styles (dresses)**



Styles we automatically discover in the Amazon dataset [McAuley et al. 2015]

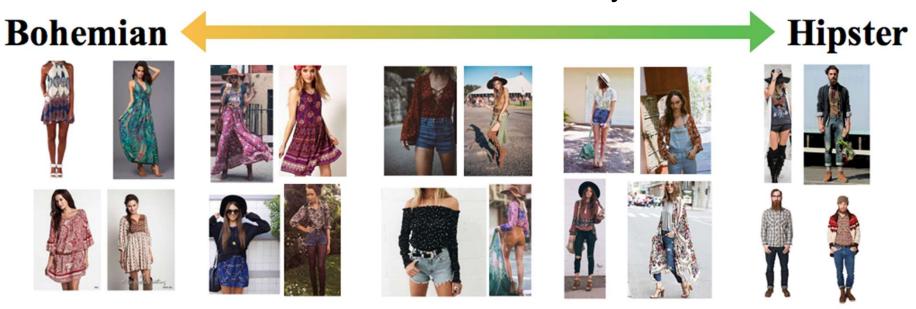
## **Example discovered styles (full outfit)**



Styles automatically discovered in the HipsterWars dataset [Kiapour et al]

# Mixing styles

Our embedding naturally facilitates browsing for mixes of user-selected styles



Hsiao & Grauman, ICCV 2017

#### Creating a "capsule" wardrobe

**Goal**: Select minimal set of pieces that mix and match well to create many viable outfits



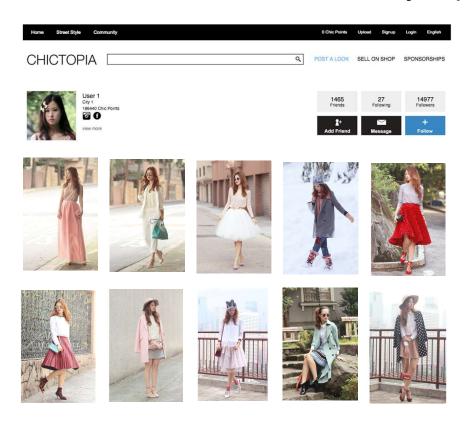
Pose as subset selection problem

set of garments = argmax compatibility + versatility

Hsiao & Grauman, CVPR 2018

# Creating a "capsule" wardrobe

Discover user's style preferences from album



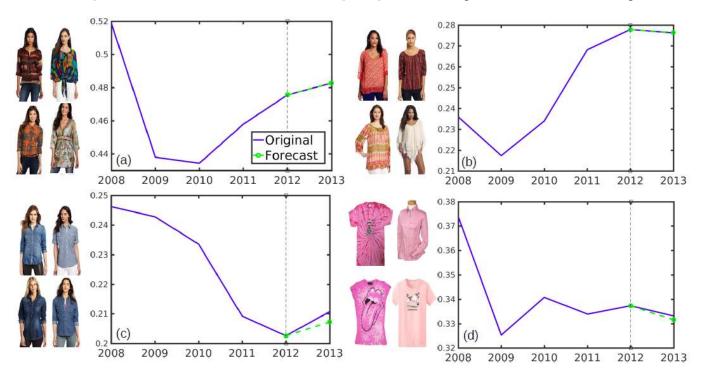
#### Personalized capsule



Hsiao & Grauman, CVPR 2018

#### Visual trend forecasting

We predict the future popularity of each style



Amazon dataset [McAuley et al. SIGIR 2015]

Al-Halah et al., ICCV 2017

#### Visual trend forecasting

What kind of fabric, texture, color will be popular next year?



(a) Texture

(b) Shape

## VizWiz: Answer blind people's visual questions

[Gurari et al. CVPR 2018] Spotlight/Poster Wednesday





Hi there can you please tell me what flavor this is?

- Goal-oriented visual questions
- Conversational language
- Assistive technology

## Summary: the language of visual attributes

New ideas for attributes as operators, comparisons, style basis Applications for visual search and fashion image analysis





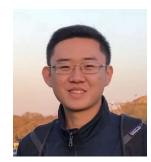












Poster Tuesday

# Papers/code

- Attributes as Operators. T. Nagarajan and K. Grauman. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, Sept 2018. [pdf] [supp] [code]
- Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images. A. Yu and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017. [pdf] [supp] [poster]
- Compare and Contrast: Learning Prominent Visual Differences. S. Chen and K. Grauman. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018. [pdf] [supp] [project page]
- Fashion Forward: Forecasting Visual Style in Fashion. Z. Al-Halah, R. Stiefelhagen, and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017. [pdf] [supp] [project page]
- Learning the Latent "Look": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images. W-L. Hsiao and K. Grauman. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, Oct 2017. [pdf] [supp] [project page/code]
- Creating Capsule Wardrobes from Fashion Images. W-L. Hsiao and K. Grauman. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018. (Spotlight) [pdf]
- VizWiz Grand Challenge: Answering Visual Questions from Blind People. D. Gurari, Q. Li, A. Stangl, A. Guo, C. Lin, K. Grauman, J. Luo, and J. Bigham. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, June 2018. (Spotlight) [pdf]