Meets: Wednesdays 1-3:50 pm
in GDC 5.516
Unique#: 51835
Instructor:
Kristen Grauman
Office: GDC 4.726
Office hours: by appointment (send email)
TA: Wei-Lin
Hsiao
Office: GDC 4S vision lab
Office hours: by appointment (send email)
Please use Piazza for
assignment questions. See Canvas for grades.
Topics: This is a graduate
seminar course in computer vision. We will survey
and discuss current vision papers relating to visual recognition (primarily of objects, object categories, and
activities). The goals of the course will be to
understand current approaches to some important problems, to
actively analyze their strengths and weaknesses, and to
identify interesting open questions and possible directions
for future research. Early weeks of
the course will consist of lectures by the instructor, and
the majority of the weeks will consist of student
presentations, experiments, and paper discussions.
Here is an outline of the main topics
we'll be covering.
Requirements summary:
Students will be responsible for:
- writing two paper reviews each week and posting a summary on Piazza
- participating in discussions during class
- completing two programming assignments
- presenting twice in class: once on external papers, and once on an experiment (possibly with a partner, details depend on enrollment)
- preparing for leading discussion on an assigned paper (details depending on final enrollment)
- completing a research-oriented final project with a partner
Note
that presentations are due one week before the slot your
presentation is scheduled. This means you will need to
read the papers and/or prepare experiments, create slides,
etc. more than one week before the date you are signed up
for. The idea is for the instructor
to preview a draft ahead of time, so that we can
iterate as needed the week leading up to your presentation.
Important details on all the
requirements and grading breakdown are here.
Prereqs: Courses in
computer vision and/or machine learning (CS
376 / CS 378H Computer Vision and/or CS 391 Machine
Learning and/or CS 395T Deep Learning, or similar); ability to
understand and analyze conference papers in this area;
programming required for experiment presentations and
projects.
Please
talk to me if you are unsure if the course is a good match
for your background. I generally recommend scanning
through a few papers on the syllabus to gauge what kind of
background is expected. I don't assume you are already
familiar with every single algorithm/tool/feature a given
paper mentions, but you should feel comfortable following
the key ideas.
Auditing
the course: Due to the format of the course and
classroom, unfortunately we are not able to accommodate
auditing. The class sessions are for registered students
only.
Date |
Topics |
Papers
and links |
Additional code/data |
Presenters/slides |
Items due |
Aug 30 |
Course intro |
Please read the requirements
page. slides |
Topic
preferences due via email to TA by Monday Sept 4.
Select 6 favorites in rank order, choosing among topics A3
through C4. Write "CS381V" in the subject
line. Important: note that the prep work for your
assigned dates will begin about 1.5-2 weeks prior; deadline
for your slides draft is 1 week prior. Paper reviews for 2 papers due Monday Sept 4, then every Monday thereafter. |
||
Sept 6 |
Instance recognition Invariant local features, local feature matching, instance recognition, visual vocabularies and bag-of-words, large-scale mining image credit: Andrea Vedaldi and Andrew Zisserman |
« Video Google: A Text Retrieval Approach to Object Matching in Videos, Sivic and Zisserman, ICCV 2003. [pdf] [demo] « Local Invariant Feature Detectors: A Survey,
Tuytelaars and Mikolajczyk. Foundations and Trends
in Computer Graphics and Vision, 2008. [pdf]
[Oxford
code] [Selected
pages -- read pp. 178-188, 216-220, 254-255] For more background on feature extraction: Szeliski book: Sec 3.2 Linear filtering, 4.1 Points and patches, 4.2 Edges SIFT meets CNN: A Decade Survey of Instance Retrieval. L. Zheng, Y. Yang, Q. Tian. [pdf]Object Retrieval with Large Vocabularies and Fast Spatial Matching. Philbin, J. and Chum, O. and Isard, M. and Sivic, J. and Zisserman, A. CVPR 2007 [pdf] Scale-space theory: A basic tool for analysing structures at different scales. T. Lindeberg. 1994 [pdf] |
Oxford group interest point software Andrea Vedaldi's VLFeat code, including SIFT, MSER, hierarchical k-means. INRIA LEAR team's software, including interest points, shape features FLANN - Fast Library for Approximate Nearest Neighbors. Marius Muja et al. Code for downloading Flickr images, by James Hays UW Community Photo Collections homepage INRIA Holiday images dataset NUS-WIDE tagged image dataset of 269K images MIRFlickr dataset Dataset index |
slides |
Coding
assignment 1 out, due Friday Sept 22 |
Sept 13 |
Category
recognition/detection Image and object recognition. Image descriptors, classifiers, support vector machines, nearest neighbors, convolutional neural networks, large-scale image collections; Image recognition, object detection, semantic segmentation, instance segmentation. Image credit: ImageNet |
« You Only Look Once: Unified, Real-Time Object Detection. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. CVPR 2016. [pdf] [project/code] « Deep Residual Learning for Image Recognition Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun, CVPR 2016. [pdf] [code] [talk] [slides] « Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, Lazebnik, Schmid, and Ponce, CVPR 2006. [pdf] [15 scenes dataset] [libpmk] [Matlab] Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs Chen, Papandreou, Kokkinos, Murphy, Yuille. ICLR 2015. [pdf] [code/data] ImageNet Classification with Deep Convolutional Neural Networks. A. Krizhevsky, I. Sutskever, and G. Hinton. NIPS 2012 [pdf] Very Deep Convolutional Networks for Large-scale Image Recognition. K. Simonyan and A. Zisserman, ICLR 2015 [pdf] Deep Learning. Y. LeCun, Y. Bengio, G. Hinton. Nature, 2015. [pdf] YOLO9000: Better, Faster, Stronger. J. Redmon and A. Farhadi. CVPR 2017 [pdf] [code] Microsoft COCO: Common Objects in Context. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, C. Lawrence Zitnick, ECCV 2014. [pdf] SSD: Single Shot MultiBox Detector. W. Liu et al. ECCV 2016. [pdf] [code] [slides] [video] Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. R. Girshick, J. Donahue, T. Darrell, J. Malik. CVPR 2013 [pdf] [supp] (see also fast R-CNN, and faster R-CNN) Mask R-CNN. K. He, G. Gkioxari, P. Dollar, R. Girshick. ICCV 2017. [pdf] Focal Loss for Dense Object Detection. T-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar. ICCV 2017. [pdf] [code] A Discriminatively Trained, Multiscale, Deformable Part Model, by P. Felzenszwalb, D. McAllester and D. Ramanan. CVPR 2008. [pdf] [code] Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, T. Darrell. CVPR 2015. [pdf] [models] Hypercolumns for Object Segmentation and Fine-Grained Localization. B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. CVPR 2015 [pdf] [code] Benchmarking State-of-the-Art Deep
Learning Software Tools. S. Shi, Q. Wang, P. Xu,
X. Chu. 2016. [pdf] |
CNN/NN open source
implementations:
Practical tips: CNN resources VGG Net Humans vs. CNNs on ImageNet Scenes - PlaceNet VLFeat code LIBPMK feature extraction code, includes dense sampling LIBSVM library for support vector machines PASCAL VOC Visual Object Classes Challenge Deep learning portal, with Theano tutorials Colah's blog Deep learning blog iPython notebook for Caffe Tips for Caffe OS X El Capitan Open Images Dataset - 9M images with labels and bounding boxes Selective search region proposals Fast SLIC superpixels Greg Mori's superpixel code Berkeley Segmentation Dataset and code Pedro Felzenszwalb's graph-based segmentation code Mean-shift: a Robust Approach Towards Feature Space Analysis [pdf] [code, Matlab interface by Shai Bagon] David Blei's Topic modeling code Berkeley 3D object dataset (kinect) Labelme Database Scene Understanding Symposium PASCAL VOC Visual Object Classes Challenge Hoggles Dataset index ConvNets for Visual Recognition course, Andrej Karpathy, Stanford Machine learning with neural nets lecture, Geoffrey Hinton Deep learning course, Bhiksha Raj, CMU Deep learning in neural networks: an overview, Juergen Schmidhuber. |
slides |
|
Sept 20 |
Self-supervised
representation learning Unsupervised feature learning from "free" side information (tracks in video, spatial layout in images, multi-modal sensed data, ego-motion, color channels, video sequences,...) and understanding what has been learned by a given representation. Image credit: Jing Wang et al. |
« Look, Listen, and Learn. R. Arandjelovic and A. Zisserman. 2017. [pdf] « Network Dissection: Quantifying Interpretability of Deep Visual Representations. D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. CVPR 2017. [pdf] [code/slides] ¤ The Curious Robot: Learning Visual Representations via Physical Interactions. L. Pinto, D. Gandhi, Y. Han, Y-L. Park, and A. Gupta. ECCV 2016. [pdf] [web] ¤ Learning Representations for Automatic Colorization. G. Larsson, M. Maire, and G. Shakhnarovich. ECCV 2016. [pdf] [web] [code] [demo] ¤ Shuffle and Learn: Unsupervised Learning Using Temporal Order Verification. I. Misra, L. Zitnick, M. Hebert. ECCV 2016. [pdf] [code/models] Learning Image Representations Tied to Ego-motion. D. Jayaraman and K. Grauman. ICCV 2015. [pdf] [web] [slides] [data] [models] [IJCV 2017] Colorization as a Proxy Task for Visual Understanding. G. Larsson, M. Maire, G. Shakhnarovich. CVPR 2017. [pdf] [code/models] Learning Features by Watching Objects Move. D. Pathak, R. Girshick, P. Dollar, T. Darrell, B. Hariharan. CVPR 2017. [pdf] [code] Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction. R. Zhang, P. Isola, A. Efros. CVPR 2017. [pdf] [code] Unsupervised Visual Representation Learning by Context Prediction. Carl Doersch, Abhinav Gupta, Alexei Efros. ICCV 2015. [pdf] [web] [code] Ambient Sound Provides Supervision for Visual Learning. A. Owens, J. Wu, J. McDermottt, W. Freeman, A. Torralba. ECCV 2016. [pdf] Visually Indicated Sounds. A. Owens, P. Isola, J. McDermott, A. Torralba, E. Adelson, W. Freeman. CVPR 2016. [pdf] [web/data] Colorful Image Colorization. R. Zhang, P. Isola, and A. Efros. ECCV 2016. [pdf] [code/slides] [demo] Unsupervised Learning for Physical Interaction through Video Prediction. C. Finn, I. Goodfellow, S. Levine. NIPS 2016. [pdf] [video/data/code] Unsupervised learning of visual representations using videos. X. Wang and A. Gupta. ICCV 2015. [pdf] [code] [web] Slow and Steady Feature Analysis: Higher Order Temporal Coherence in Video. D. Jayaraman and K. Grauman. CVPR 2016. [pdf] Object-Centric Representation Learning from Unlabeled Videos. R. Gao, D. Jayaraman, and K. Grauman. ACCV 2016. [pdf] Learning to See by Moving. P. Agrawal, J. Carreira, J. Malik. ICCV 2015. [pdf] Unsupervised learning of visual representations by solving jigsaw puzzles. M. Noroozi and P. Favaro. 2016 [pdf] Curiosity-driven Exploration by Self-supervised Prediction. D. Pathak, P. Agrawal, A. Efros, T. Darrell. ICML 2017. [pdf] [code] |
slides External papers Experiment (with partner)
Proponent/opponent:
|
Coding assignment 2 out, due Wed Oct 11 (with follow up due Fri Oct 13) | |
Sept 27 | CNN
implementation tutorial |
slides on Piazza |
|||
Oct 4 |
Actions
and objects in video Detecting activities, actions, and events in images or video. Extracting foreground objects with video object segmentation. Recognition, relating actions to scenes, video descriptors, interactions with objects. Image credit: Limin Wang |
« Temporal Segment Networks: Towards Good Practices for Deep Action Recognition. L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, L. Van Gool. ECCV 2016. [pdf] [code] « Unsupervised
Learning from Narrated Instruction Videos.
J. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic,
I. Laptev, S. Lacoste-Julien. CVPR
2016. [pdf]
[code/video/slides] ¤ Learning to Segment Moving Objects in Videos. K. Fragkiadaki, P. Arbelaez, P. Felsen, J. Malik. CVPR 2015 [pdf] [code] ¤ Action
Recognition with Improved Trajectories. H.
Wang and C. Schmid. ICCV 2013. [pdf]
[web/code]
[IJCV] Dynamic
Image Networks for Action Recognition. H. Bilen,
B. Fernando, E. Gavves, A. Vedaldi, S. Gould.
CVPR 2016. [pdf]
[code]
Actions~Transformations.
X. Wang, A. Farhadi, and A. Gupta. CVPR
2016. [pdf]
[data] Convolutional
Two-Stream Network Fusion for Video Action
Recognition. C. Feichtenhofer, A. Pinz, A.
Zisserman. CVPR 2016. [pdf]
[code] FusionSeg: Learning to Combine Motion and Appearance for Fully Automatic Segmentation of Generic Objects in Video. S. Jain, B. Xiong, and K. Grauman. CVPR 2017. [pdf] [demo][project page/videos/code] [DAVIS results leaderboard] Track and Segment: An Iterative Unsupervised Approach for Video Object Proposals. F. Xiao and Y. J. Lee. CVPR 2016. [project page] [pdf]Learning Video Object Segmentation with Visual Memory. P. Tokmakov, K. Alahari, C. Schmid. ICCV 2017. [pdf] Fast Temporal Activity Proposals for Efficient Detection of Human Actions in Untrimmed Videos. F. Heilbron, J. Niebles, and B. Ghanem. CVPR 2016. [pdf] [web] [code] Learning Motion Patterns in Video. P. Tokmakov, K. Alahari, C. Schmid. CVPR 2017. [pdf] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. J. Carreira and A. Zisserman. CVPR 2017. [pdf] [pretrained models] Situation
Recognition: Visual Semantic Role Labeling for Image
Understanding. M. Yatskar, L. Zettlemoyer, and
A. Farhadi. [pdf]
[demo/data/code] Learnable Pooling with
Context Gating for Video Classification. A.
Miech, I. Laptev, J. Sivic. CVPR YouTube-8M
Workshop 2017 [pdf] The Open World of Micro-Videos. P.
Nguyen, G. Rogez, C. Fowlkes, and D. Ramanan.
2016 [pdf]
Learning
Spatiotemporal Features with 3D Convolutional
Networks. D. Tran, L. Bourdev, R. Fergus, L.
Torresani, and M. Paluri. ICCV 2015. [pdf]
[code] Learning
Video Object Segmentation from Static Images. A.
Khoreva, F. Perazzi, R. Benenson, B. Schiele, A.
Sorkine-Hornung. CVPR 2017. [pdf] One-Shot
Video Object Segmentation. S. Caelles et al. CVPR
2017. [pdf] Structural-RNN:
Deep Learning on Spatio-Temporal Graphs. A.
Jain, A. Zamir, S. Savarese, A. Saxena. CVPR
2016 [pdf]
[code/demo]
Efficient Hierarchical Graph-Based
Video Segmentation. M. Grundmann, V.
Kwatra, M. Han, and I. Essa. CVPR
2010. [pdf]
[code,demo] Temporal
Action Localization in Untrimmed Videos via Multi-stage
CNNs. Z. Shou, D. Wang, and S-F. Chang. CVPR
2016. [pdf]
[code]
Efficient
Activity Detection in Untrimmed Video with Max-Subgraph
Search. C-Y. Chen and K. Grauman. PAMI
2016. [pdf]
[web]
[code] Hollywood
in Homes: Crowdsourcing Data Collection for Activity
Understanding. G. Sigurdsson, G. Varol, X. Wang,
A. Farhadi, I. Laptev, and A. Gupta. ECCV
2016. [pdf] [web/data] Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video. Y-C. Su and K. Grauman. ECCV 2016. [pdf] End-to-end
learning of action detection from frame glimpses in
videos. Yeung, S., Russakovsky, O., Mori,
G., Fei-Fei, L. CVPR 2016. [pdf]
[web] What do
15,000 object categories tell us about classifying and
localizing actions? Jain, M., van Gemert, J.C.,
Snoek, C.G.M. CVPR 2015. [pdf] |
Stanford
Event Dataset Chao-Yeh Chen's compiled list of activity datasets UCF-101 dataset Olympic sports dataset Charades/Hollywood in Homes dataset and challenge Activitynet and CVPR17 workshop challenge THUMOS action detection dataset Kinetics YouTube dataset and paper YouTube 8M and CVPR17 workshop challenge Google AVA dataset of atomic actions in movies and paper |
External papers: Experiments (with partner)
Proponent/opponent:
|
|
Oct 11 |
First-person
vision Egocentric wearable cameras. Recognizing actions and manipulated objects, predicting gaze, discovering patterns and anomalies, temporal segmentation, forecasting future activity, longitudinal visual observations. Image credit: D. Damen et al. |
« First-Person Activity Forecasting with Online Inverse Reinforcement Learning. N. Rhinehart and K. Kitani. ICCV 2017. [pdf] [video] « You-Do, I-Learn: Discovering Task Relevant Objects and their Modes of Interaction from Multi-User Egocentric Video. D Damen, T. Leelasawassuk, O Haines, A Calway, W Mayol-Cuevas. BMVC 2014. [pdf] [data] « An Egocentric Perspective on Active Vision and Visual Object Learning in Toddlers. S. Bambach, D. Crandall, L. Smith, C. Yu. ICDL 2017. [pdf] ¤ KrishnaCam: Using a Longitudinal, Single-Person, Egocentric Dataset for Scene Understanding Tasks. K. Singh, K. Fatahalian, and A. Efros. WACV 2016 [pdf] [web/data] ¤ Deep Future Gaze: Gaze Anticipation on Egocentric Videos Using Adversarial Networks. M. Zhang et al. CVPR 2017. [pdf] [code/data/video] ¤ Temporal Segmentation of Egocentric Videos. Y. Poleg, C. Arora, and S. Peleg. CVPR 2014. [pdf] [code/data] Delving into Egocentric Actions, Y. Li, Z. Ye, and J. Rehg. CVPR 2015. [pdf] An Egocentric Look at Video Photographer Identity, Y. Hoshen and S. Peleg. CVPR 2016. [pdf] EgoSampling: Wide View Hyperlapse from Single and Multiple Egocentric Videos. T. Halperin, Y. Poleg, C. Arora, and S. Peleg. 2017 [pdf] Egocentric Field-of-View Localization Using First-Person Point-of-View Devices. V. Bettadapura, I. Essa, C. Pantofaru. WACV 2015. [video] [pdf] Unsupervised Learning of Important Objects from First-Person Videos. G. Bertasius, H. S. Park, S. Yu, and J. Shi. ICCV 2017. [pdf] How Everyday Visual Experience Prepares the Way for Learning Object Names. E. Clerkin, E. Hart, J. Rehg, C. Yu, L. Smith. ICDL 2016 [pdf] Active Viewing in Toddlers Facilitates Visual Object Learning: An Egocentric Vision Approach. S. Bambach, D. Crandall, L. Smith, C. Yu. CogSci 2016. [pdf] Seeing Invisible Poses: Estimating 3D Body Pose from Egocentric Video. H. Jiang and K. Grauman. CVPR 2017. [pdf] [videos] Detecting Engagement in Egocentric Video. Y-C. Su and K. Grauman. ECCV 2016. [pdf] [data] Story-driven Summarization for Egocentric Video. Z. Lu and K. Grauman. CVPR 2013 [pdf] Predicting Important Objects for Egocentric Video Summarization. Y. J. Lee and K. Grauman. IJCV 2015 [pdf] [web] Force from Motion: Decoding Physical Sensation from a First Person Video. H.S. Park, J-J. Hwang and J. Shi. CVPR 2016. [pdf] [web/data] Learning to Predict Gaze in Egocentric Video. Y. Li, A. Fathi, and J. Rehg. ICCV 2013. [pdf] [data] Identifying First-Person Camera Wearers in Third-Person Videos. C. Fan, J. Lee, M. Xu, K. Singh, Y. J. Lee, D. Crandall, M. Ryoo. CVPR 2017. [pdf] Trespassing the Boundaries: Labelling Temporal Bounds for Object INteractions in Egocentric Video. ICCV 2017. [pdf] [web/data] Visual Motif Discovery via First-Person Vision. R. Yonetani, K. Kitani, and Y. Sato. ECCV 2016. [pdf] Learning Action Maps of Large Environments via First-Person Vision. N. Rhinehart, K. Kitani. CVPR 2016. [pdf] [slides] Fast Unsupervised Ego-Action Learning for First-person Sports Videos. Kris M. Kitani, Takahiro Okabe, Yoichi Sato, and Akihiro Sugimoto. CVPR 2011 [pdf] Egocentric Future Localization. H. S. Park, J-J. Hwang, Y. Niu, and J. Shi. CVPR 2016. [pdf] [web] Figure-Ground Segmentation Improves Handled Object Recognition in Egocentric Video. X. Ren and C. Gu, CVPR 2010. [pdf] [video] [dataset] Compact CNN for Indexing Egocentric Videos. Y. Poleg, A. Ephrat, S. Peleg, C. Arora. WACV 2015 [pdf] Understanding Everyday Hands in Action from RGB-D Images. G. Rogez, J. Supancic, D. Ramanan. ICCV 2015. [pdf] Recognizing Activities of Daily Living with a Wrist-mounted Camera. K. Ohnishi, A. Kanehira, A. Kanezaki, and T. Harada. CVPR 2016. [pdf] [poster] [data] PlaceAvoider: Steering First-Person Cameras away from Sensitive Spaces. R. Templeman, M. Korayem, D. Crandall, and A. Kapadia. NDSS 2014. [pdf] Enhancing Lifelogging Privacy by Detecting Screens. M. Korayem, R. Templeman, D. Chen, D. Crandall, and A. Kapadia. CHI 2016. [pdf] [web] EgoSampling: Fast Forward and Stereo for Egocentric Videos. Y. Poleg, T. Halperin, C. Arora, S. Peleg. CVPR 2015. [pdf] |
ICCV
2017 EPIC workshop ECCV 2016 EPIC workshop CVPR 2016 tutorial on first-person vision Bristol Egocentric Object Interactions Dataset UT Egocentric Dataset Intel Egocentric Vison dataset Georgia Tech Egocentric Activity datasets GTEA Gaze Ego-surfing dataset CMU Multi-Modal Activity Database (kitchen) Detecting Activities of Daily Living (ADL) dataset Walk to Work dataset for novelty detection JPL First-Person Interaction dataset Multimodal Egocentric Activity Dataset - lifelogging EgoGroup group activities dataset UI EgoHands dataset CMU Zoombie dataset walking with hands GUN 71 grasps dataset Object search dataset UT Egocentric Engagement dataset Wrist-mounted camera dataset Stanford ECM dataset EgoSurf dataset Egocentric Shopping Cart Localization dataset |
External papers: Experiments (with partner) Proponent/opponent:
|
Project
proposal guidelines out, due Wed Oct 25 |
Oct 18 |
Embodied
visual perception Vision and action. Learning how to move for recognition, manipulation, sequential tasks. 3D objects and the next best view. Active selection of next observations for cost-sensitive recognition. Visual learning grounded in action and physical interaction. Vision/recognition for robotics. Image credit: Y. Zhu et al. |
« Visual Semantic Planning Using Deep Successor Representations. Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi, A. Farhadi. ICCV 2017 [pdf] [web] [THOR] « A Dataset for Developing and Benchmarking Active Vision. P. Ammirato, P. Poirson, E. Park, J. Kosecka, A. Berg. ICRA 2017. [pdf] [dataset] « Generalizing Vision-Based Robotic Skills using Weakly Labeled Images. A. Singh, L. Yang, S. Levine. ICCV 2017. [pdf] [video] [web] ¤ The Development of Embodied Cognition: Six Lessons from Babies. L. Smith and M. Gasser. Artif Life. 2005 [pdf] ¤ Deep Affordance-grounded Sensorimotor Object Recognition. S. Thermos et al. CVPR 2017. [pdf] ¤ Curiosity-Driven Exploration by Self-Supervised Prediction. D. Pathak, P. Agrawal, A. Efros, T. Darrell. ICML 2017. [pdf] [web] Learning Image Representations Tied to Ego-Motion. D. Jayaraman and K. Grauman. ICCV 2015. [pdf] [code,data] [slides] Pairwise
Decomposition of Image Sequences for Active Multi-View
Recognition. E. Johns, S. Leutenegger, A.
Davison. CVPR 2016. [pdf] Autonomously
Acquiring Instance-Based Object Models from
Experience. J. Oberlin and S. Tellex. ISRR
2015 [pdf] Learning to Poke by Poking: Experiential Learning of Intuitive Physics. P. Agrawal, A. Nair, P. Abbeel, J. Malik, S. Levine. 2016 [pdf] [web] Look-Ahead Before You Leap: End-to-End Active Recognition by Forecasting the Effect of Motion. D. Jayaraman and K. Grauman. ECCV 2016. [pdf]Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation. Y. Liu, A. Gupta, P. Abeel, S. Levine. 2017. [pdf] [video] Deep Q-Learning for active recognition of GERMS: Baseline performance on a standardized dataset for active learning. Malmir et al. BMVC 2015. [pdf] [data] Interactive Perception: Leveraging Action in Perception and Perception in Action. J. Bogh, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, G. Sukhatme. IEEE Trans. on Robotics. 2016. [pdf] Revisiting Active Perception. R. Bajcsy, Y. Aloimonos, J. Tsotsos. 2016. [pdf] Learning
attentional policies for tracking and recognition in
video with deep networks. L. Bazzani, H.
Larochelle, V. Murino, J. Ting, N. de Freitas.
ICML 2011. [pdf]
|
UNC
Active Vision dataset BigBIRD Berkeley Instance Recognition Dataset and paper CVPR 2017 Workshop on Visual Understanding Across Modalities THOR challenge to navigate and find objects in a virtual environment SUNCG dataset for indoor scenes CVPR 2017 Workshop on Deep Learning for Robotic Vision 3D ShapeNets Princeton ModelNet iLab-20M dataset GERMS Dataset for active object recognition RGB-D Sensorimotor Object dataset |
External papers: Experiments (with partner) Proponent/opponent:
|
|
Oct 25 | ICCV - no class |
Project proposals due Wed Oct
25 |
|||
Nov 1 |
People Analyzing people in the scene. Re-identification, attributes, gaze following, crowds, faces, clothing fashion. Image credit: Z. Cao et al. |
« Realtime Multi-Person 2D
Pose Estimation using Part Affinity Fields. Z. Cao,
T. Simon, S-E. Wei, Y. Sheikh. CVPR 2017. [pdf] [video]
[code] « End-to-End Localization and Ranking for Relative Attributes. K. Singh and Y. J. Lee. ECCV 2016. [pdf] [code] « Learning Visual Clothing Style with Heterogeneous Dyadic Co-occurrences. Veit*, Andreas; Kovacs*, Balazs; Bell, Sean; McAuley, Julian; Bala, Kavita; Belongie, Serge. ICCV 2015. [pdf] [code/data] ¤ Finding Tiny Faces. P. Hu, D. Ramanan. CVPR 2017. [pdf] [data/code] ¤ Learning from Synthetic Humans. G. Varol, J. Romero, X. Martin, N. Mahmood, M. Black, I. Laptev, C. Schmid. CVPR 2017. [pdf] [data] [code/videos] ¤ Synthesizing Normalized Faces from Facial Identity Features. F. Cole, D. Belanger, D. Krishnan, A. Sarna I. Mosseri, W. Freeman CVPR 2017. [pdf] [video] Unsupervised Adaptive Re-identification in Open World Dynamic Camera Networks. Panda et al. CVPR 2017. [pdf] Social Saliency Prediction. H. S. Park and J. Shi. CVPR 2015 [pdf] Eye Tracking for Everyone. K. Krafka, A. Khosla, P. Kellnhofer, S. Bhandarkar, W. Matusik and A. Torralba. CVPR 2016. [pdf] [web/data] Human Pose Estimation with Iterative Error Feedback. J. Carreira, P. Agrawal, K. Fragkiadaki, J. Malik. CVPR 2016. [pdf] [code] Where are they looking? Khosla, Recasens, Vondrick, Torralba. NIPS 2015. [pdf] [demo] [web] Detecting Events and Key Actors in Multi-Person Videos. V. Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban, K. Murphy, L. Fei-Fei. CVPR 2016. [pdf] [project/data] Person Re-identification by Local Maximal Occurrence Representation and Metric Learning. S. Liao, Y. Hu, X. Zhu, S. Li. CVPR 2015. [pdf] [code/features] Real-time human pose recognition in parts from single depth images. J. Shotton et al. CVPR 2011. [pdf] [video] Hipster Wars: Discovering Elements of Fashion Styles. M. Kiapour, K. Yamaguchi, A. Berg, and T. Berg. ECCV 2014. [pdf] [game] [dataset] DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations. Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. CVPR 2016. [pdf] [web] Deep Domain Adaptation for Describing People Based on Fine-Grained Clothing Attributes. Q. Chen, J. Huang, R. Feris, L. Brown, J. Dong, S. Yan. CVPR 2015 [pdf]
|
Various
attributes datasets and code links SURREAL dataset ICCV 2017 Workshop on PeopleCap MS-Celeb-1M Recognizing 1 Million Celebrities CVPR 2017 Faces in the Wild Workshop Challenge MPII Human Pose Dataset UCI Proxemics Recognition Dataset BodyLabs Mosh app WiderFace Face detection benchmark PRW Person re-identification in the wild dataset MARS dataset for person re-identification PRID 2011 dataset iLIDS-VID dataset Face detection code in OpenCV Gallagher's Person Dataset Face data from Buffy episode, from Oxford Visual Geometry Group CALVIN upper-body detector code UMass Labeled Faces in the Wild FaceTracer database from Columbia Database of human attributes Stanford Group Discovery dataset IMDB-WIKI 500k+ face images with age and gender labels, and names Fashion Synthesis |
External papers: Experiments (with partner) Proponent/opponent:
|
|
Nov 8 |
Visual
data mining and discovery Discovering visual patterns within large-scale community photo collections. Correlating visual and non-visual properties. Street view data and Flickr photos. Demograhics, geography, ecology, brands, fashion. Image credit: Arietta et al. |
« StreetStyle: Exploring
World-Wide Clothing Styles from Millions of Photos.
K. Matzen, K. Bala, and N. Snavely. 2017 [pdf] [web]
[data]
[demo] « City Forensics: Using Visual Elements to Predict Non-Visual City Attributes. Arietta, Efros, Ramammoorthy, Agrawala. Trans on Visualization and Graphics, 2014. [pdf] [web] « Mapping the World's Photos. D. Crandall, L. Backstrom, D. Huttenlocher, J. Kleinberg. WWW 2009. [pdf] [web] ¤ Using Deep Learning and Google Street View to Estimate the Demographic Makeup of the US. T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. Aiden, L. Fei-Fei. 2017. [pdf] ¤ Visualizing Brand Associations from Web Community Photos. G. Kim and E. Xing. ACM WSDM 2014. [pdf] [web] ¤ Observing the Natural World with Flickr. J. Wang, M. Korayem, D. Crandall. ICCV 2013 Workshops. [pdf] What Makes Paris Look Like Paris? C. Doersch, S. Singh, A. Gupta, J. Sivic, A. Efros. SIGGRAPH 2012. [pdf] [web/code] Learning the Latent "Look": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images. W-L. Hsiao and K. Grauman. ICCV 2017. [pdf] [project page/code] A Century of Portraits: A Visual Historical Record of American High School Yearbooks. S. Ginosar, K. Rakelly, S. Sachs, B. Yin, and A. Efros. ICCV 2015 Extreme Imaging Workshop. [pdf] [web] Clues from the Beaten Path: Location Estimation with Bursty Sequences of Tourist Photos. C.-Y. Chen and K. Grauman. CVPR 2011. [pdf] [project page] [data] Tracking Natural Events through Social Media and Computer Vision. J. Wang, M. Korayem, S. Blanco, D. Crandall. ACM MM 2016. [pdf] Style-Aware Mid-level Representation for Discovering Visual Connections in Space and Time. Y. J. Lee, A. Efros, M. Hebert. ICCV 2013. [pdf] [web/code] Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs. X. Li, C. Wu, C. Zach, S. Lazebnik, J. Frahm. IJCV 2011 [pdf] [web] |
External papers: Experiments (with partner) Proponent/opponent:
|
||
Nov 15 |
Where to look Predicting or leveraging what gets noticed or remembered in images and video. Gaze, saliency, importance, memorability, summarization. Image credit: N. Karessli et al. |
« Gaze Embeddings for Zero-Shot Image Classification. N. Karessli, Z. Akata, B. Schiele, A. Bulling. CVPR 2017. [pdf] « Video Summarization by Learning Submodular Mixtures of Objectives. M. Gygli, H. Grabner, L. Van Gool. CVPR 2015 [pdf] [code] ¤ Deep 360 Pilot: Learning a Deep Agent for Piloting Through 360° Sports Videos, Hou-Ning Hu, Yen-Chen Lin, Ming-Yu Liu, Hsien-Tzu Cheng, Yung-Ju Chang, Min Sun. CVPR 2017 [pdf] [code] ¤ End-to-end Learning of Action Detection from Frame Glimpses in Videos. S. Yeung, O. Russakovsky, G. Mori, L. Fei-Fei. CVPR 2016. [pdf] [code] [web] Learning Visual Attention to Identify People with Autism Spectrum Disorder. M. Jiang and Q. Zhao. ICCV 2017. [pdf] Making 360 Video Watchable in 2D: Learning Videography for Click Free Viewing. Y-C. Su and K. Grauman. CVPR 2017. [pdf] [videos] [slides] The Secrets of Salient Object Segmentation. Y. Li, X. Hou, C. Koch, J. Rehg, A. Yuille. CVPR 2014 [pdf] [code] Hierarchically Attentive RNN for Album Summarization and Storytelling. L. Yu, M. Bansal, T. Berg. EMNLP 2017. [pdf] Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition S. Mathe, C. Sminchisescu. PAMI 2015 [pdf] [data] Understanding and Predicting Image Memorability at a Large Scale. A. Khosla, S. Raju, A. Torralba, and A. Oliva. ICCV 2015. [pdf] [web] [code/data] What is a Salient Object? A Dataset and Baseline Model for Salient Object Detection. A. Borji. IEEE TIP 2014 [pdf] Saliency Revisited: Analysis of Mouse Movements versus Fixations. H. Tavakoli, F. Ahmed, A. Borji, J. Laaksonen. CVPR 2017. [pdf] Learning video saliency from human gaze using candidate selection. D. Rudoy et al. CVPR 2013 [pdf] [web] [video] [code] Video Summarization with Long Short-term Memory. K. Zhang, W-L. Chao, F. Sha, and K. Grauman. ECCV 2016 [pdf] Predicting Important Objects for Egocentric Video Summarization. Y. J. Lee and K. Grauman. IJCV 2015. [pdf] Pixel Objectness. S. Jain, B. Xiong, K. Grauman. 2017 [pdf] Learning to Detect a Salient Object. T. Liu et al. CVPR 2007. [pdf] [results] [data] [code] Learning Prototypical Event Structure from Photo Albums. A. Bosselut, J. Chen, D. Warren, H. Hajishirzi, Y. Choi. ACL 2016. [pdf] [data] Storyline Representation of Egocentric Videos with an Application to Story-Based Search. B. Xiong, G. Kim, L. Sigal. ICCV 2015 [pdf] Training Object Class Detectors from Eye Tracking Data. D. P. Papadopoulos, A. D. F. Clarke, F. Keller and V. Ferrari. ECCV 2014. [pdf] [data] |
MIT saliency benchmark Salient Object Detection benchmark Saliency datasets The DIEM Project: visualizing dynamic images and eye movements MIT eye tracking data LaMem Demo LaMem Dataset MSRA salient object database MED video summaries dataset ETHZ video summaries dataset VSUMM dataset for video summarization UT Egocentric dataset / important regions Salient Montages dataset IBM Watson movie trailer generation |
External papers: Experiments (with partner) Proponent/opponent:
|
|
Nov 22 |
No class (Thanksgiving) |
||||
Nov 29 |
Language
and vision Connecting language and vision. Captioning, referring expressions, question answering, word-image embeddings, attributes, storytelling Image credit: J. Mao et al. |
ICCV 2017. [pdf] [code/data] [demo] « From Red Wine to Red Tomato: Composition with Context. I. Misra, A. Gupta, M. Hebert. CVPR 2017 [pdf] « A Joint Speaker-Listener-Reinforcer Model for Referring Expressions. Licheng Yu, Hao Tan, Mohit Bansal, Tamara L. Berg. CVPR 2017 [pdf] [web] ¤ Learning deep structure-preserving
image-text embeddings. Wang, Liwei, Yin Li, and Svetlana
Lazebnik. CVPR 2016 [pdf] [code]
¤ Reasoning about Pragmatics with
Neural Listeners and Speakers. J. Andreas and D.
Klein. EMNLP 2016 [pdf]
[code] ¤ Visual Question
Answering. S. Antol, A. Agrawal, J. Lu, M.
Mitchell, D. Batra, C. Zitnick, D. Parikh. ICCV
2015 [pdf][data/code/demo] Generation and Comprehension of Unambiguous Object Descriptions. J. Mao, J. Huang, A. Toshev, O. Camburu, A. Yuille, K. Murphy. CVPR 2016. [pdf] [data/web] [code] DeViSE: A Deep Visual-Semantic Embedding Model. A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, T. Mikolov. NIPS 2013 [pdf] Visual Storytelling. T-H. Huang et
al. NAACL 2016 [pdf]
[data] Visual Mad Libs: Fill in the Blank
Description Generation and Question Answering. L.
Yu, E. Park, A. Berg, T. Berg. ICCV 2015 [pdf]
[video]
[data] Deep Compositional Captioning: Describing
Novel Object Categories without Paired Training
Data. L. Hendricks, S. Venugopalan, M. Rohrbach,
R. Mooney, K. Saenko, T. Darrell. CVPR 2016.
[pdf] Stacked attention networks for image
question answering. Z. Yang, X. He, J. Gao, L. Deng, A.
Smola. CVPR 2016. [pdf] [code] Neural Module Networks. J. Andreas, M. Rohrbach, T. Darrell, D. Klein. CVPR 2016. [pdf] [code] Where to Look: Focus Regions for Visual
Question Answering. K. Shih, S. Singh, D.
Hoiem. CVPR 2016. [pdf] [web/code] MovieQA: Understanding Stories in Movies
through Question-Answering. M. Tapaswi, Y. Zhu, R.
Stiefelhagen, A. Torralba, R. Urtasun, S. Fidler. CVPR
2016. [pdf]
[web] Sequence to Sequence - Video to
Text. S. Venugopalan et al. ICCV 2015
[pdf]
[web]
[code]
|
CVPR 2016 VQA Challenge Workshop COCO Captioning Challenge dataset VideoSET
summary evaluation data AbstractScenes
dataset |
External papers: Experiments (with partner): Proponent/opponent:
|
|
Dec 6 |
Final project presentations in class (poster
session) |
Final papers due Fri Dec 8 |