Meets: Wednesdays 1-3:50 pm
in GDC 4.516
Unique number:
51710
Instructor:
Kristen Grauman
Office: GDC 4.726
Office hours: by appointment (send email)
TA: Kai-Yang
Chiang
Office: GDC 4.802D
Office hours: TBD
Please use Piazza for
assignment questions. See Canvas for grades.
HW2 Leader Board
Topics: This is a graduate
seminar course in computer vision. We will survey
and discuss current vision papers relating to visual recognition (primarily of objects, object categories, and
activities). The goals of the course will be to
understand current approaches to some important problems, to
actively analyze their strengths and weaknesses, and to
identify interesting open questions and possible directions
for future research. Early weeks of
the course will consist of extended lecture sessions by the
instructor, and other weeks will consist of student
presentations, experiments, and paper discussions.
Here is an outline of the main topics
we'll be covering.
Requirements summary:
Students will be responsible for:
- writing two paper reviews each week and posting a summary on Piazza
- participating in discussions during class
- completing two programming assignments
- presenting twice in class: once on external papers, and once on an experiment
- preparing for leading discussion on an assigned paper ~twice (as either proponent or opponent, and details depending on final enrollment)
- completing a research-oriented final project with a partner
Note
that presentations are due one week before the slot your
presentation is scheduled. This means you will need to
read the papers and/or prepare experiments, create slides,
etc. more than one week before the date you are signed up
for. The idea is for the instructor
to preview a draft ahead of time, so that we can
iterate as needed the week leading up to your presentation.
Important details on all the
requirements and grading breakdown are here.
Prereqs: Courses in
computer vision and/or machine learning (CS
376 Computer Vision and/or CS 391 Machine Learning, or
similar); ability to understand and analyze conference papers
in this area; programming required for experiment
presentations and projects.
Please
talk to me if you are unsure if the course is a good match
for your background. I generally recommend scanning
through a few papers on the syllabus to gauge what kind of
background is expected. I don't assume you are already
familiar with every single algorithm/tool/image feature a
given paper mentions, but you should feel comfortable
following the key ideas.
Auditing
the course: Due to the format of the course,
unfortunately we are not able to accommodate auditing.
The class sessions are for registered students only.
Date |
Topics |
Papers
and links |
Additional code/data |
Presenters/slides |
Items due |
Aug 24 |
Course intro |
Please read the requirements
page. slides |
Topic
preferences due via email to TA by Monday Aug 29.
Select 6 favorites in rank order, choosing among topics A3
through E2. Write "CS381V" in the subject
line. Note that the prep work for your assigned
dates will begin about 1.5-2 weeks prior. Paper reviews for 2 papers due Monday Aug 29. |
||
Aug 31 |
Instance recognition Invariant local features, local feature matching, instance recognition, visual vocabularies and bag-of-words, large-scale mining image credit: Andrea Vedaldi and Andrew Zisserman |
« Video Google: A Text Retrieval Approach to Object Matching in Videos, Sivic and Zisserman, ICCV 2003. [pdf] [demo] « Local Invariant Feature Detectors: A Survey,
Tuytelaars and Mikolajczyk. Foundations and Trends
in Computer Graphics and Vision, 2008. [pdf]
[Oxford
code] [Selected
pages -- read pp. 178-188, 216-220, 254-255] For more background on feature extraction: Szeliski book: Sec 3.2 Linear filtering, 4.1 Points and patches, 4.2 Edges SIFT meets CNN: A Decade Survey of Instance Retrieval. L. Zheng, Y. Yang, Q. Tian. [pdf] |
Oxford group interest point software Andrea Vedaldi's VLFeat code, including SIFT, MSER, hierarchical k-means. INRIA LEAR team's software, including interest points, shape features FLANN - Fast Library for Approximate Nearest Neighbors. Marius Muja et al. Code for downloading Flickr images, by James Hays UW Community Photo Collections homepage INRIA Holiday images dataset NUS-WIDE tagged image dataset of 269K images MIRFlickr dataset Dataset index |
lecture
outline slides |
Coding
assignment 1 out, due Friday Sept 16 |
Sept 7 |
Category
recognition Image descriptors, classifiers, support vector machines, nearest neighbors, convolutional neural networks, large-scale image collections Image credit: ImageNet |
« ImageNet Classification with Deep Convolutional Neural Networks. A. Krizhevsky, I. Sutskever, and G. Hinton. NIPS 2012 [pdf] « Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, Lazebnik, Schmid, and Ponce, CVPR 2006. [pdf] [15 scenes dataset] [libpmk] [Matlab] 80 Million tiny images: a large dataset for non-parametric object and scene recognition. A. Torralba, R. Fergus, and W. Freeman. PAMI 2008. [pdf] Deep Neural Decision Forests. Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, Samuel Rota Bulo. ICCV 2015. [pdf] Deep Residual Learning for Image Recognition Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun, CVPR 2016. [pdf] Very deep convolutional networks for large-scale image recognition. K. Simonyan and A. Zisserman, ICLR 2015 [pdf] ConvNets
for Visual Recognition course, Andrej Karpathy,
Stanford |
CNN/NN open source
implementations:
Practical tips: CNN resources VGG Net Scenes - PlaceNet VLFeat code LIBPMK feature extraction code, includes dense sampling LIBSVM library for support vector machines PASCAL VOC Visual Object Classes Challenge Deep learning portal, with Theano tutorials Colah's blog Deep learning blog iPython notebook for Caffe Tips for Caffe OS X El Capitan |
lecture
outline slides tutorial slides: deep learning primer (longer version) Caffe primer Caffe primer codes github repo |
Monday Sept 12, 5:30-7:30 pm, optional
hands-on Caffe/CNN tutorial, by Dinesh Jayaraman and
Subhashini Venugopalan in GDC 5.302 (NOT usual classroom) |
Sept 14 |
Segmentation
and localization Segmentation into regions, contours, grouping, video segmentation, category-independent object proposals, object detection with proposals or windows, semantic segmentation Image credit: Fanyi Xiao and Yong Jae Lee |
« Track and Segment: An
Iterative Unsupervised Approach for Video Object
Proposals. F. Xiao and Y. J. Lee.
CVPR 2016. [project page] [pdf] « Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. R. Girshick, J. Donahue, T. Darrell, J. Malik. CVPR 2013 [pdf] [supp] (see also fast R-CNN, and faster R-CNN) ¤ Constrained Parametric Min-Cuts for Automatic Object Segmentation. J. Carreira and C. Sminchisescu. CVPR 2010. [pdf] [code] ¤ Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs Chen, Papandreou, Kokkinos, Murphy, Yuille. ICLR 2015. [pdf] [code/data] Efficient Hierarchical Graph-Based Video Segmentation. M. Grundmann, V. Kwatra, M. Han, and I. Essa. CVPR 2010. [pdf] [code,demo] Supervoxel-Consistent Foreground Propagation in Video. S. Jain and K. Grauman. ECCV 2014. [pdf] [project page] [data] Selective Search for Object Recognition. J. Uijilings, K. van de Sande, T. Gevers, A. Smeulders. IJCV 2013. [pdf] [project,code] Streaming hierarchical video segmentation. C. Xu, C. Xiong, J. Corso. ECCV 2012. [pdf] [code] A Discriminatively Trained, Multiscale, Deformable Part Model, by P. Felzenszwalb, D. McAllester and D. Ramanan. CVPR 2008. [pdf] [code] Microsoft COCO: Common Objects in Context. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, C. Lawrence Zitnick, ECCV 2014. [pdf] Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, T. Darrell. CVPR 2015. [pdf] [models] Hypercolumns for Object Segmentation and Fine-Grained Localization. B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. CVPR 2015 [pdf] [code] Simultaneous Detection and Segmentation. B. Hariharan, P. Arbelaez, R. Girshick, J. Malik. ECCV 2014. [pdf] [code] Learning to Segment Moving Objects in Videos. K. Fragkiadaki, P. Arbelaez, P. Felsen, J. Malik. CVPR 2015 [pdf] |
Selective
search region proposals Fast SLIC superpixels Greg Mori's superpixel code Berkeley Segmentation Dataset and code Pedro Felzenszwalb's graph-based segmentation code Mean-shift: a Robust Approach Towards Feature Space Analysis [pdf] [code, Matlab interface by Shai Bagon] David Blei's Topic modeling code Berkeley 3D object dataset (kinect) Labelme Database Scene Understanding Symposium PASCAL VOC Visual Object Classes Challenge Hoggles Dataset index |
lecture
outline slides Expt-Harshal Paper-Brady Paper-Josh Discuss: Zhenpei, Tushar, Nayan |
Coding assignment 2 out, due Friday Sept 30 (with follow up due Mon Oct 3) |
Sept 21 |
Self-supervised
representation learning Unsupervised feature learning from "free" side information (tracks in video, spatial layout in images, multi-modal sensed data, ego-motion). Image credit: Jing Wang et al. |
« Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data. J. Wang, Y. Cheng, and R. Feris. CVPR 2016. [pdf] ¤ Ambient Sound Provides Supervision for Visual Learning. A. Owens, J. Wu, J. McDermottt, W. Freeman, A. Torralba. ECCV 2016. [pdf] ¤ Learning Representations for Automatic Colorization. G. Larsson, M. Maire, and G. Shakhnarovich. ECCV 2016. [pdf] [web] [code] [demo] Visually Indicated Sounds. A. Owens, P. Isola, J. McDermott, A. Torralba, E. Adelson, W. Freeman. CVPR 2016. [pdf] [web/data] Learning Image Representations Equivariant to Ego-motion. D. Jayaraman and K. Grauman. ICCV 2015. [pdf] [web] [slides] [data] [models] Unsupervised learning of visual representations using videos. X. Wang and A. Gupta. ICCV 2015. [pdf] [code] [web] Slow and Steady Feature Analysis: Higher Order Temporal Coherence in Video. D. Jayaraman and K. Grauman. CVPR 2016. [pdf] Object-Centric Representation Learning from Unlabeled Videos. R. Gao, D. Jayaraman, and K. Grauman. ACCV 2016. [pdf] Unsupervised learning of visual representations by solving jigsaw puzzles. M. Noroozi and P. Favaro. 2016 [pdf] Learning to See by Moving. P. Agrawal, J. Carreira, J. Malik. ICCV 2015. [pdf] Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. I. Misra, C. Zitnick, M. Hebert. ECCV 2016. [pdf] |
lecture
slides Expt-Yiming Expt-Tushar Paper-An Discuss: Harshal, Wei-Lin, Vivek, Ambika |
||
Sept 28 |
Attributes Visual properties, adjectives, relative comparisons; learning from natural language descriptions, intermediate shared representations, applications in fashion and street-view prediction tasks Image credit: Ziad Al-Halah et al. |
« Recovering the Missing Link: Predicting Class-Attribute Associations for Unsupervised Zero-Shot Learning. Z. Al-Halah, M. Tapaswi, and R. Stiefelhagen. CVPR 2016 [pdf] [features] « Relative Attributes. D. Parikh and K. Grauman. ICCV 2011. [pdf] [code/data] ¤ City Forensics: Using Visual Elements to Predict Non-Visual City Attributes. Arietta, Efros, Ramammoorthy, Agrawala. Trans on Visualization and Graphics, 2014. [pdf] [web] ¤ Street-to-Shop: Cross-Scenario Clothing Retrieval via Parts Alignment and Auxiliary Set. S. Liu, Z. Song, G. Liu, C. Xu, H. Lu, and S. Yan. CVPR 2012. [pdf] Hipster Wars: Discovering Elements of Fashion Styles. M. Kiapour, K. Yamaguchi, A. Berg, and T. Berg. ECCV 2014. [pdf] [game] [dataset] Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer, C. Lampert, H. Nickisch, and S. Harmeling, CVPR 2009 [pdf] [web] [data] End-to-End Localization and Ranking for Relative Attributes. K. Singh and Y. J. Lee. ECCV 2016. [pdf] DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations. Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. CVPR 2016. [pdf] [web] Discovering the spatial extent of relative attributes. F. Xiao and Y. J. Lee. ICCV 2015. [pdf] [code] Multi-Cue Zero-Shot Learning With Strong Supervision, Zeynep Akata, Mateusz Malinowski, Mario Fritz, Bernt Schiele. CVPR 2016. [pdf] Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression. R. Qiao, L. Liu, C. Shen, and A. van den Hengel. CVPR 2016. [pdf] Fine-Grained Visual Comparisons with Local Learning. A. Yu and K. Grauman. CVPR 2014. [pdf] [supp] [poster] [data] [project page] Photo Aesthetics Ranking Network with Attributes and Content Adaptation. S. Kong, X. Shen, Z. Lin, R. Mech, and C. Fowlkes. ECCV 2016. [pdf] Decorrelating Semantic Visual Attributes by Resisting the Urge to Share. D. Jayaraman, F. Sha, and K. Grauman. CVPR 2014. [pdf] [supp] [project page] [slides] [poster] WhittleSearch: Interactive Image Search with Relative Attribute Feedback. A. Kovashka, D. Parikh, and K. Grauman. International Journal on Computer Vision (IJCV), Volume 115, Issue 2, pp 185-210, November 2015. [link] [arxiv] [demo] [project page] Deep Domain Adaptation for Describing People Based on Fine-Grained Clothing Attributes. Q. Chen, J. Huang, R. Feris, L. Brown, J. Dong, S. Yan. CVPR 2015 [pdf] |
Animals
with Attributes dataset aYahoo and aPascal attributes datasets Attribute discovery dataset of shopping categories Public Figures Face database with attributes Relative attributes data WhittleSearch relative attributes data SUN Scenes attribute dataset Cross-category object recognition (CORE) dataset Leeds Butterfly Dataset FaceTracer database from Columbia Caltech-UCSD Birds dataset Database of human attributes More attribute datasets 2014 Workshop on Parts & Attributes UT Zappos 50K dataset Dataset index UT Austin MLSS Attributes lecture CVPR 2013 Attributes tutorial |
lecture
slides Expt-Mit Expt-Wei-Lin Discuss: Dongguang, An, Josh, Dan |
|
Oct 5 |
Actions
and events Detecting activities, actions, and events in images or video. Recognition challenges, relating actions to scenes, video descriptors, interactions with objects. Image credit: H. Wang and C. Schmid |
« The
Open World of Micro-Videos. P. Nguyen, G. Rogez,
C. Fowlkes, and D. Ramanan. 2016 [pdf]
¤ SceneGrok:
Inferring Action Maps in 3D Environments. M.
Savva, A. Chang, P. Hanrahan, M. Fisher, and M.
Niebner. [pdf]
[web/data] ¤ Anticipating
Visual Representations from Unlabeled Video. C.
Vondrick, H. Pirsiavash, and A. Torralba. CVPR
2016. [pdf]
C3D:
Generic features for video analysis. D. Tran, L.
Bourdev, R. Fergus, L. Torresani, and M. Paluri. [pdf] Actions~Transformations. X. Wang, A. Farhadi, and A. Gupta. CVPR 2016. [pdf] [data] People Watching: Human Actions as a Cue for Single View Geometry. Fouhey, Delaitre, Gupta, Efros, Laptev, Sivic. ECCV 2012 [pdf] [journal] [web] [slides] [video] Temporal
Action Localization in Untrimmed Videos via Multi-stage
CNNs. Z. Shou, D. Wang, and S-F. Chang. CVPR
2016. [pdf]
[code]
Regularizing Long Short Term Memory with 3D Human-Skeleton Sequences for Action Recognition. B. Mahasseni and S. Todorovic. CVPR 2016. [pdf] Activity
Forecasting. K. Kitani, B. Ziebart, J. Bagnell and
M. Hebert. ECCV 2012. [pdf]
[data/code] Fast Temporal Activity Proposals for Efficient Detection of Human Actions in Untrimmed Videos. F. Heilbron, J. Niebles, and B. Ghanem. CVPR 2016. [pdf] [web] [code] Efficient
Activity Detection in Untrimmed Video with Max-Subgraph
Search. C-Y. Chen and K.
Grauman. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), April 2016. [pdf] [web]
[code] Hollywood
in Homes: Crowdsourcing Data Collection for Activity
Understanding. G. Sigurdsson, G. Varol, X. Wang,
A. Farhadi, I. Laptev, and A. Gupta. ECCV
2016. [pdf] [web/data] What do
15,000 object categories tell us about classifying and
localizing actions? Jain, M., van Gemert, J.C.,
Snoek, C.G.M. CVPR 2015. [pdf] Two-stream
convolutional networks for action recognition in
videos. Simonyan, K., Zisserman, A. NIPS
2014. [pdf] |
Stanford
Event Dataset Dataset index Chao-Yeh Chen's compiled list of activity datasets UCF-101 dataset Olympic sports dataset Charades dataset Activitynet THUMOS action detection dataset |
Paper-Zhenpei Paper-Dan Expt-Brady Expt-Nayan Discuss: Vivek, Ambika, Hangchen |
Project proposal/poster/paper guidelines
posted hw2 leader board |
Oct 12 |
First-person
vision Egocentric wearable cameras. Recognizing actions and manipulated objects, predicting gaze, discovering patterns and anomalies, temporal segmentation, estimating physical properties Image credit: Krishna Kumar Singh et al. |
« Learning
to Predict Gaze in Egocentric Video. Y. Li, A.
Fathi, and J. Rehg. ICCV 2013. [pdf]
[data] « KrishnaCam: Using a Longitudinal, Single-Person, Egocentric Dataset for Scene Understanding Tasks. K. Singh, K. Fatahalian, and A. Efros. WACV 2016 [pdf] [web/data] « You-Do, I-Learn: Discovering Task Relevant Objects and their Modes of Interaction from Multi-User Egocentric Video. D Damen, T. Leelasawassuk, O Haines, A Calway, W Mayol-Cuevas. BMVC 2014. [pdf] [data] ¤ Temporal Segmentation of Egocentric Videos. Y. Poleg, C. Arora, and S. Peleg. CVPR 2014. [pdf] [code/data] ¤ Force from Motion: Decoding Physical Sensation from a First Person Video. H.S. Park, J-J. Hwang and J. Shi. CVPR 2016. [pdf] [web/data] An Egocentric Look at Video Photographer Identity, Y. Hoshen and S. Peleg. CVPR 2016. [pdf] Visual Motif Discovery via First-Person Vision. R. Yonetani, K. Kitani, and Y. Sato. ECCV 2016. [pdf] Predicting Important Objects for Egocentric Video Summarization. Y. J. Lee and K. Grauman. IJCV 2015 [pdf] [web] Learning Action Maps of Large Environments via First-Person Vision. N. Rhinehart, K. Kitani. CVPR 2016. [pdf] [slides] Fast Unsupervised Ego-Action Learning for First-person Sports Videos. Kris M. Kitani, Takahiro Okabe, Yoichi Sato, and Akihiro Sugimoto. CVPR 2011 [pdf] Egocentric Future Localization. H. S. Park, J-J. Hwang, Y. Niu, and J. Shi. CVPR 2016. [pdf] [web] Figure-Ground Segmentation Improves Handled Object Recognition in Egocentric Video. X. Ren and C. Gu, CVPR 2010. [pdf] [video] [dataset] Compact CNN for Indexing Egocentric Videos. Y. Poleg, A. Ephrat, S. Peleg, C. Arora. WACV 2015 [pdf] Delving into Egocentric Actions, Y. Li, Z. Ye, and J. Rehg. CVPR 2015. [pdf] Detecting Engagement in Egocentric Video. Y-C. Su and K. Grauman. ECCV 2016 [pdf] Understanding Everyday Hands in Action from RGB-D Images. G. Rogez, J. Supancic, D. Ramanan. ICCV 2015. [pdf] Recognizing Activities of Daily Living with a Wrist-mounted Camera. K. Ohnishi, A. Kanehira, A. Kanezaki, and T. Harada. CVPR 2016. [pdf] [poster] PlaceAvoider: Steering First-Person Cameras away from Sensitive Spaces. R. Templeman, M. Korayem, D. Crandall, and A. Kapadia. NDSS 2014. [pdf] Enhancing Lifelogging Privacy by Detecting Screens. M. Korayem, R. Templeman, D. Chen, D. Crandall, and A. Kapadia. CHI 2016. [pdf] [web] EgoSampling: Wide View Hyperlapse from Single and Multiple Egocentric Videos. T. Halperin, Y. Poleg, C. Arora, and S. Peleg. 2016 [pdf] Story-driven Summarization for Egocentric Video. Z. Lu and K. Grauman. CVPR 2013 [pdf] Modeling actions through state changes. A Fathi and J Rehg. CVPR 2013. [pdf] |
CVPR
2016 tutorial on first-person vision Bristol Egocentric Object Interactions Dataset UT Egocentric Dataset Intel Egocentric Vison dataset GTEA GTEA Gaze Ego-surfing dataset CMU Multi-Modal Activity Database (kitchen) Detecting Activities of Daily Living (ADL) dataset Walk to Work dataset for novelty detection JPL First-Person Interaction dataset Multimodal Egocentric Activity Dataset - lifelogging EgoGroup group activities dataset UI EgoHands dataset CMU Zoombie dataset walking with hands GUN 71 grasps dataset |
Paper-Jimmy Paper-Vivek Expt-Wenguang Expt-Ambika Discuss: Dongguang, Brady, Mit, Dan |
Reminder: project proposals
due next week (see handout) |
Oct 19 |
Active
perception Learning how to move for recognition, manipulation. 3D objects and the next best view. Active selection of next observations for cost-sensitive recognition. Image credit: Dinesh Jayaraman |
« Pairwise
Decomposition of Image Sequences for Active Multi-View
Recognition. E. Johns, S. Leutenegger, A.
Davison. CVPR 2016. [pdf] ¤ Timely object recognition. Karayev, S., Baumgartner, T., Fritz, M., Darrell, T. NIPS 2012 [pdf] [code] [slides] 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling. Wu et al. CVPR 2015. [pdf] [code/data] [slide] Deep Q-learning for active recognition of GERMS: Baseline performance on a standardized dataset for active learning. Malmir et al. BMVC 2015. [pdf] [data] Interactive Perception: Leveraging Action in Perception and Perception in Action. J. Bogh, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, G. Sukhatme. IEEE Trans. on Robotics. 2016. [pdf] Revisiting Active Perception. R. Bajcsy, Y. Aloimonos, J. Tsotsos. 2016. [pdf] Learning to Poke by Poking: Experiential Learning of Intuitive Physics. P. Agrawal, A. Nair, P. Abbeel, J. Malik, S. Levine. 2016 [pdf] [web] Learning
attentional policies for tracking and recognition in
video with deep networks. L. Bazzani, H.
Larochelle, V. Murino, J. Ting, N. de Freitas.
ICML 2011. [pdf] Optimal
scanning for faster object detection. Butko, N.,
Movellan, J. CVPR 2009 [pdf] An active
search strategy for efficient object detection.
Garcia, A.G., Vezhnevets, A., Ferrari, V. CVPR
2015. [pdf] Leaving
Some Stones Unturned: Dynamic Feature Prioritization for
Activity Detection in Streaming Video. Y-C. Su and
K. Grauman. ECCV 2016. [pdf]
|
GERMS Dataset for active object recognition 3D ShapeNets Princeton ModelNet iLab-20M dataset |
Paper-Hangchen Paper-Nayan Expt-Dongguang Discuss: Jimmy, Zhenpei, Wenguang |
Project proposals due |
Oct 26 |
People
looking at scenes Predicting what gets noticed or remembered in images and video. Gaze, saliency, importance, memorability, mentioning biases. Image credit: Y. Li et al. |
« The Secrets of Salient Object Segmentation. Y. Li, X. Hou, C. Koch, J. Rehg, A. Yuille. CVPR 2014 [pdf] [code] ¤ Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition S. Mathe, C. Sminchisescu. PAMI 2015 [pdf] [data] ¤ Understanding and Predicting Image Memorability at a Large Scale. A. Khosla, S. Raju, A. Torralba, and A. Oliva. ICCV 2015. [pdf] [web] [code/data] Learning video saliency from human gaze using candidate selection. D. Rudoy et al. CVPR 2013 [pdf] [web] [video] [code] Learning to Detect a Salient Object. T. Liu et al. CVPR 2007. [pdf] [results] [data] [code] Salient
Object Detection: A Benchmark. A. Borji, D.
Sihite, L. Itti. ECCV 2012. [pdf] Eye
Tracking for Everyone. K. Krafka, A. Khosla, P.
Kellnhofer, S. Bhandarkar, W. Matusik and A.
Torralba. CVPR 2016. [pdf]
[web/data]
Understanding and Predicting Importance in Images. A. Berg et al. CVPR 2012 [pdf] |
MIT saliency benchmark Salient Object Detection benchmark Saliency datasets The DIEM Project: visualizing dynamic images and eye movements MIT eye tracking data LaMem Demo LaMem Dataset MSRA salient object database MED video summaries dataset ETHZ video summaries dataset VSUMM dataset for video summarization UT Egocentric dataset / important regions Salient Montages dataset |
Paper-Mit Paper-Ambika Expt-Jimmy Expt-An Discuss: Hangchen, Kate, Tushar, Nayan |
|
Nov 2 |
People in
scenes Analyzing people in the scene. Re-identification, attributes, gaze following, crowds. |
« What's in a Name: First Names as Facial Attributes. H. Chen, A. Gallagher, and B. Girod. CVPR 2013. [pdf] [web/code] [demo] « Person Re-identification by Local Maximal Occurrence Representation and Metric Learning. S. Liao, Y. Hu, X. Zhu, S. Li. CVPR 2015. [pdf] [code/features]¤ Where are they looking? Khosla, Recasens, Vondrick, Torralba. NIPS 2015. [pdf] [demo] [web] ¤ Socially Aware Large-Scale Crowd Forecasting. A. Alahi, V. Ramanathan, L. Fei-Fei. CVPR 2014. [pdf] [data] Social
Saliency Prediction. H. S. Park and J. Shi.
CVPR 2015 [pdf] Social
LSTM: Human Trajectory Prediction in Crowded
Spaces. A. Alahi, K. Goel, V. Ramanathan, A.
Robicquet, L. Fei-Fei, S. Savarese. CVPR
2016. [pdf] Learning
Social Etiquette: Human Trajectory Prediction. A.
Robicquet, A. Sadeghian, A. Alahi, S. Savarese.
ECCV 2016. Detecting
Events and Key Actors in Multi-Person Videos. V.
Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban, K.
Murphy, and L. Fei-Fei. CVPR 2016. [pdf]
Person
Re-identification in the Wild. L. Zheng, H. Zhang,
S. SUn, M. Chandraker, Q. Tian. 2016. [pdf] Top-Push
Video-based Person Re-identification. J. You, A.
Wu, X. Li, W-S. Zheng. CVPR 2016. [pdf] Detecting People Looking at Each Other in Videos. M. Marin-Jimenez, A. Zisserman, M. Eichner, V. Ferrari. IJCV 2014 [pdf] |
PRW
Person re-identification in the wild dataset MARS dataset for person re-identification PRID 2011 dataset iLIDS-VID dataset Face detection code in OpenCV Gallagher's Person Dataset Face data from Buffy episode, from Oxford Visual Geometry Group CALVIN upper-body detector code UMass Labeled Faces in the Wild FaceTracer database from Columbia Database of human attributes Stanford Group Discovery dataset IMDB-WIKI 500k+ face images with age and gender labels, and names |
Paper-Dongguang Paper-Wenguang Expt-Dan Expt-Zhenpei Discuss: Yiming, An, Mit, Wei-Lin |
|
Nov 9 |
Sketches Hand-drawn sketches and visual recognition. Retrieving natural images matching a sketch query, forensics applications, interactive drawing tools, fine-grained retrieval. Image credit: P. Sangkloy et al. |
« The
Sketchy Database: Learning to Retrieve Badly Drawn
Bunnies. P. Sangkloy, N. Burnell, C. Ham, and J.
Hays. SIGGRAPH 2016. [pdf]
[web] [code/model]
[database] ¤
ShadowDraw: Real-Time User Guidance for Freehand
Drawing. Y. J. Lee, C. L. Zitnick, M. Cohen.
SIGGRAPH 2011. [pdf]
[web/video/data] ¤ Sketch Me That Shoe. Q. Yu, F. Liu, Y-Z. Song, T. Xiang, T. Hospedales, C. Loy. CVPR 2016. [pdf] [code/data/model] [demo]
Sketch-a-Net that Beats Humans. Q. Yu, Y. Yang, Y-Z. Song, T. Xiang, T. Hospedales. BMVC 2015. [pdf] Scalable Sketch-based Image Retrieval Using Color Gradient Features. T. Bui and J. Collomosse. ICCV 2015. [pdf] [demo] How Do Humans Sketch Objects? M. Eitz, J. Hays, M. Alexa. SIGGRAPH 2012. [pdf] [web/data] Fine-Grained
Sketch-Based Image Retrieval by Matching Deformable Part
Modela. Y. Li, T. Hospedales, Y-Z. Song, S.
Gong. BMVC 2014. [pdf] Sketch2Photo:
Internet Image Montage. T. Chen, M-M. Cheng, P.
Tan, A. Shamir, S-M. Hu. SIGGRAPH Asia 2009.
[pdf]
[web] Convolutional Sketch Inversion. Y. Gucluturk, U. Guclu, R. van Lier, M. van Gerven. 2016 [pdf] |
ECCV 2016 Workshop
on Visual Analysis of Sketches Face sketch photo dataset Quickdraw |
Paper-Harshal Paper-Wei-Lin Expt-Hangchen Expt-Josh Discuss: Yiming, Kate, Brady |
|
Nov 16 |
Language
and vision Connecting language and vision. Captioning, referring expressions, question answering, word-image embeddings, storytelling Image credit: J. Mao et al. |
« Generation and Comprehension of Unambiguous Object Descriptions. J. Mao, J. Huang, A. Toshev, O. Camburu, A. Yuille, K. Murphy. CVPR 2016. [pdf] [data/web] [code] ¤ DeViSE: A Deep Visual-Semantic
Embedding Model. A. Frome, G. Corrado, J. Shlens,
S. Bengio, J. Dean, M. Ranzato, T. Mikolov. NIPS
2013 [pdf] Deep Compositional Captioning: Describing
Novel Object Categories without Paired Training
Data. L. Hendricks, S. Venugopalan, M. Rohrbach,
R. Mooney, K. Saenko, T. Darrell. CVPR 2016.
[pdf] Stacked attention networks for image
question answering. Z. Yang, X. He, J. Gao, L. Deng, A.
Smola. CVPR 2016. [pdf] [code] Neural Module Networks. J. Andreas, M. Rohrbach, T. Darrell, D. Klein. CVPR 2016. [pdf] [code] Where to Look: Focus Regions for Visual
Question Answering. K. Shih, S. Singh, D.
Hoiem. CVPR 2016. [pdf] [web/code] MovieQA: Understanding Stories in Movies
through Question-Answering. M. Tapaswi, Y. Zhu, R.
Stiefelhagen, A. Torralba, R. Urtasun, S. Fidler. CVPR
2016. [pdf]
[web] Sequence to Sequence - Video to
Text. S. Venugopalan et al. ICCV 2015
[pdf]
[web]
[code] |
CVPR 2016 VQA Challenge Workshop COCO Captioning Challenge dataset VideoSET
summary evaluation data ReferIt dataset |
Paper-Yiming Paper-Tushar Expt-Vivek Discuss: Jimmy, Harshal, Wenguang, Josh |
|
Nov 23 |
No class - Thanksgiving |
|
|||
Nov 30 |
Final project presentations in class (poster
session) |
Final papers and poster
reviews due Friday Dec 2 |